Title:
|
Isotropic almost complex structures and harmonic unit vector fields (English) |
Author:
|
Baghban, Amir |
Author:
|
Abedi, Esmaeil |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
54 |
Issue:
|
1 |
Year:
|
2018 |
Pages:
|
15-32 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Isotropic almost complex structures $J_{\delta , \sigma }$ define a class of Riemannian metrics $g_{\delta , \sigma }$ on tangent bundles of Riemannian manifolds which are a generalization of the Sasaki metric. In this paper, some results will be obtained on the integrability of these almost complex structures and the notion of a harmonic unit vector field will be introduced with respect to the metrics $g_{\delta , 0}$. Furthermore, the necessary and sufficient conditions for a unit vector field to be a harmonic unit vector field will be obtained. (English) |
Keyword:
|
complex structures |
Keyword:
|
energy functional |
Keyword:
|
isotropic almost complex structure |
Keyword:
|
unit tangent bundle |
Keyword:
|
variational problem |
Keyword:
|
tension field |
MSC:
|
53C15 |
MSC:
|
53C43 |
idZBL:
|
Zbl 06861555 |
idMR:
|
MR3783289 |
DOI:
|
10.5817/AM2018-1-15 |
. |
Date available:
|
2018-03-12T13:43:07Z |
Last updated:
|
2020-01-05 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/147107 |
. |
Reference:
|
[1] Abbassi, M.T.K., Calvaruso, G., Perrone, D.: Harmonicity of unit vector fields with respect to Riemannian g-natural metrics.Differential Geom. Appl. 27 (2009), 157–169. MR 2488999, 10.1016/j.difgeo.2008.06.016 |
Reference:
|
[2] Abbassi, M.T.K., Calvaruso, G., Perrone, D.: Harmonic sections of tangent bundles equipped with Riemannian g-natural metrics.Quart. J. Math. 62 (2011), 259–288. MR 2805204, 10.1093/qmath/hap040 |
Reference:
|
[3] Abbassi, M.T.K., Sarih, M.: On some hereditary properties of Riemannian g-natural metrics on tangent bundles of Riemannian manifolds.Differential Geom. Appl. 22 (2005), 19–47. MR 2106375 |
Reference:
|
[4] Aguilar, R.M.: Isotropic almost complex structures on tangent bundles.Manuscripta Math. 90 (1996), 429–436. MR 1403714, 10.1007/BF02568316 |
Reference:
|
[5] Baghban, A., Abedi, E.: On the harmonic vector fields.$8$th Seminar on Geometry and Topology, Amirkabir University of Technology, 2015. |
Reference:
|
[6] Bouzir, H., Beldjilali, G., Belkhelfa, M., Wade, A.: Generalized kahler manifolds and transformation of generalized contact structures.Arch. Math. (Brno) 53 (2017), 35–48. MR 3636680, 10.5817/AM2017-1-35 |
Reference:
|
[7] Calvaruso, G.: Harmonicity properties of invariant vector fields on three-dimensional Lorentzian Lie groups.J. Geom. Phys. 61 (2011), 498–515. MR 2746133, 10.1016/j.geomphys.2010.11.001 |
Reference:
|
[8] Calvaruso, G.: Harmonicity of vector fields on four-dimensional generalized symmetric spaces.Central Eur. J. Math. 10 (2012), 411–425. MR 2886549, 10.2478/s11533-011-0109-9 |
Reference:
|
[9] Dragomir, S., Perrone, D.: Harmonic vector fields, Variational Principles and Differential Geometry.Elsevier, 2012. MR 3286434 |
Reference:
|
[10] Friswell, R.M.: Harmonic vector fields on pseudo-Riemannian manifolds.Ph.D. thesis, 2014. |
Reference:
|
[11] Friswell, R.M., Wood, C.M.: Harmonic vector fields on pseudo-Riemannian manifolds.J. Geom. Phys. 112 (2017), 45–58. MR 3588756, 10.1016/j.geomphys.2016.10.015 |
Reference:
|
[12] Gil-Medrano, O.: Relationship between volume and energy of unit vector fields.Differential Geom. Appl. 15 (2001), 137–152. MR 1857559, 10.1016/S0926-2245(01)00053-5 |
Reference:
|
[13] Sasaki, S.: On the differential geometry of tangent bundles of Riemannian manifolds.Tôhoku Math. J. 10, 338–354. MR 0112152, 10.2748/tmj/1178244668 |
Reference:
|
[14] Urakawa, H.: Calculus of variations and harmonic maps.American Mathematical Society, 1993. MR 1252178 |
. |