[2] Ali, S., Huang, S.:
On generalized Jordan $(\alpha,\beta)$-derivations that act as homomorphisms or anti-homomorphisms. J. Algebra Comput. Appl. (electronic only) 1 (2011), 13-19.
MR 2862508 |
Zbl 1291.16038
[5] Bell, H. E., Kappe, L. C.:
Rings in which derivations satisfy certain algebraic conditions. Acta Math. Hung. 53 (1989), 339-346 \99999DOI99999 10.1007/BF01953371 \goodbreak.
DOI 10.1007/BF01953371 |
MR 1014917 |
Zbl 0705.16021
[13] Dhara, B.:
Derivations with Engel conditions on multilinear polynomials in prime rings. Demonstr. Math. 42 (2009), 467-478.
MR 2554943 |
Zbl 1188.16037
[15] Dhara, B., Huang, S., Pattanayak, A.:
Generalized derivations and multilinear polynomials in prime rings. Bull. Malays. Math. Sci. Soc. 36 (2013), 1071-1081.
MR 3108796 |
Zbl 1281.16046
[17] Dhara, B., Sahebi, S., Rehmani, V.:
Generalized derivations as a generalization of Jordan homomorphisms acting on Lie ideals and right ideals. Math. Slovaca 65 (2015), 963-974.
DOI 10.1515/ms-2015-0065 |
MR 3433047 |
Zbl 06534094
[24] Lee, T.-K.:
Semiprime rings with differential identities. Bull. Inst. Math., Acad. Sin. 20 (1992), 27-38.
MR 1166215 |
Zbl 0769.16017