Previous |  Up |  Next

Article

Title: A characterization of reflexive spaces of operators (English)
Author: Bračič, Janko
Author: Oliveira, Lina
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 68
Issue: 1
Year: 2018
Pages: 257-266
Summary lang: English
.
Category: math
.
Summary: We show that for a linear space of operators ${\mathcal M}\subseteq {\mathcal B}(\scr {H}_1,\scr {H}_2)$ the following assertions are equivalent. (i) ${\mathcal M} $ is reflexive in the sense of Loginov-Shulman. (ii) There exists an order-preserving map $\Psi =(\psi _1,\psi _2)$ on a bilattice ${\rm Bil}({\mathcal M})$ of subspaces determined by ${\mathcal M}$ with $P\leq \psi _1(P,Q)$ and $Q\leq \psi _2(P,Q)$ for any pair $(P,Q)\in {\rm Bil}({\mathcal M})$, and such that an operator $T\in {\mathcal B}(\scr {H}_1,\scr {H}_2)$ lies in ${\mathcal M}$ if and only if $\psi _2(P,Q)T\psi _1(P,Q)=0$ for all $(P,Q)\in {\rm Bil}( {\mathcal M})$. This extends the Erdos-Power type characterization of weakly closed bimodules over a nest algebra to reflexive spaces. (English)
Keyword: reflexive space of operators
Keyword: order-preserving map
MSC: 47A15
idZBL: Zbl 06861579
idMR: MR3783597
DOI: 10.21136/CMJ.2017.0456-16
.
Date available: 2018-03-19T10:30:35Z
Last updated: 2020-07-06
Stable URL: http://hdl.handle.net/10338.dmlcz/147133
.
Reference: [1] Han, D. G.: On $\scr A$-submodules for reflexive operator algebras.Proc. Am. Math. Soc. 104 (1988), 1067-1070. Zbl 0694.47031, MR 0969048, 10.2307/2047592
Reference: [2] Erdos, J. A.: Reflexivity for subspace maps and linear spaces of operators.Proc. Lond. Math. Soc., III Ser. 52 (1986), 582-600. Zbl 0609.47053, MR 0833651, 10.1112/plms/s3-52.3.582
Reference: [3] Erdos, J. A., Power, S. C.: Weakly closed ideals of nest algebras.J. Oper. Theory 7 (1982), 219-235. Zbl 0523.47027, MR 0658610
Reference: [4] Hadwin, D.: A general view of reflexivity.Trans. Am. Math. Soc. 344 (1994), 325-360. Zbl 0802.46010, MR 1239639, 10.1090/S0002-9947-1994-1239639-4
Reference: [5] Halmos, P. R.: Reflexive lattices of subspaces.J. Lond. Math. Soc., II. Ser. 4 (1971), 257-263. Zbl 0231.47003, MR 0288612, 10.1112/jlms/s2-4.2.257
Reference: [6] Kliś-Garlicka, K.: Reflexivity of bilattices.Czech. Math. J. 63 (2013), 995-1000. Zbl 1313.47024, MR 3165510, 10.1007/s10587-013-0067-4
Reference: [7] Kliś-Garlicka, K.: Hyperreflexivity of bilattices.Czech. Math. J. 66 (2016), 119-125. Zbl 06587878, MR 3483227, 10.1007/s10587-016-0244-3
Reference: [8] Li, P., Li, F.: Jordan modules and Jordan ideals of reflexive algebras.Integral Equations Oper. Theory 74 (2012), 123-136. Zbl 1286.47046, MR 2969043, 10.1007/s00020-012-1982-8
Reference: [9] Loginov, A. I., Sul'man, V. S.: Hereditary and intermediate reflexivity of $W\sp*$-algebras.Izv. Akad. Nauk SSSR Ser. Mat. 39 (1975), 1260-1273 Russian. Zbl 0327.46073, MR 0405124
Reference: [10] Shulman, V., Turowska, L.: Operator synthesis I. Synthetic sets, bilattices and tensor algebras.J. Funct. Anal. 209 (2004), 293-331. Zbl 1071.47066, MR 2044225, 10.1016/S0022-1236(03)00270-2
.

Files

Files Size Format View
CzechMathJ_68-2018-1_16.pdf 279.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo