Previous |  Up |  Next

Article

Title: Representations of the general linear group over symmetry classes of polynomials (English)
Author: Zamani, Yousef
Author: Ranjbari, Mahin
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 68
Issue: 1
Year: 2018
Pages: 267-276
Summary lang: English
.
Category: math
.
Summary: Let $V$ be the complex vector space of homogeneous linear polynomials in the variables $x_{1}, \ldots , x_{m}$. Suppose $G$ is a subgroup of $S_{m}$, and $\chi $ is an irreducible character of $G$. Let $H_{d}(G,\chi )$ be the symmetry class of polynomials of degree $d$ with respect to $G$ and $\chi $. \endgraf For any linear operator $T$ acting on $V$, there is a (unique) induced operator $K_{\chi } (T)\in {\rm End}(H_{d}(G,\chi ))$ acting on symmetrized decomposable polynomials by $$ K_{\chi }(T)(f_1\ast f_2\ast \ldots \ast f_d)=Tf_1\ast Tf_2\ast \ldots \ast Tf_d. $$ In this paper, we show that the representation $T\mapsto K_{\chi } (T)$ of the general linear group $GL(V)$ is equivalent to the direct sum of $\chi (1)$ copies of a representation (not necessarily irreducible) $T\mapsto B_{\chi }^{G}(T)$. (English)
Keyword: symmetry class of polynomials
Keyword: general linear group
Keyword: representation
Keyword: irreducible character
Keyword: induced operator
MSC: 05E05
MSC: 15A69
MSC: 20C15
idZBL: Zbl 06861580
idMR: MR3783598
DOI: 10.21136/CMJ.2017.0458-16
.
Date available: 2018-03-19T10:31:04Z
Last updated: 2020-07-06
Stable URL: http://hdl.handle.net/10338.dmlcz/147134
.
Reference: [1] Babaei, E., Zamani, Y.: Symmetry classes of polynomials associated with the dihedral group.Bull. Iran. Math. Soc. 40 (2014), 863-874. Zbl 1338.05271, MR 3255403
Reference: [2] Babaei, E., Zamani, Y.: Symmetry classes of polynomials associated with the direct product of permutation groups.Int. J. Group Theory 3 (2014), 63-69. Zbl 1330.05159, MR 3213989
Reference: [3] Babaei, E., Zamani, Y., Shahryari, M.: Symmetry classes of polynomials.Commun. Algebra 44 (2016), 1514-1530. Zbl 1338.05272, MR 3473866, 10.1080/00927872.2015.1027357
Reference: [4] Isaacs, I. M.: Character Theory of Finite Groups.Pure and Applied Mathematics 69, Academic Press, New York (1976). Zbl 0337.20005, MR 0460423
Reference: [5] Merris, R.: Multilinear Algebra.Algebra, Logic and Applications 8, Gordon and Breach Science Publishers, Amsterdam (1997). Zbl 0892.15020, MR 1475219
Reference: [6] Ranjbari, M., Zamani, Y.: Induced operators on symmetry classes of polynomials.Int. J. Group Theory 6 (2017), 21-35. MR 3621030
Reference: [7] Rodtes, K.: Symmetry classes of polynomials associated to the semidihedral group and o-bases.J. Algebra Appl. 13 (2014), Article ID 1450059, 7 pages. Zbl 1297.05243, MR 3225126, 10.1142/S0219498814500595
Reference: [8] Shahryari, M.: Relative symmetric polynomials.Linear Algebra Appl. 433 (2010), 1410-1421. Zbl 1194.05162, MR 2680267, 10.1016/j.laa.2010.05.020
Reference: [9] Zamani, Y., Babaei, E.: Symmetry classes of polynomials associated with the dicyclic group.Asian-Eur. J. Math. 6 (2013), Article ID 1350033, 10 pages. Zbl 1277.05168, MR 3130082, 10.1142/S1793557113500332
Reference: [10] Zamani, Y., Babaei, E.: The dimensions of cyclic symmetry classes of polynomials.J. Algebra Appl. 13 (2014), Article ID 1350085, 10 pages. Zbl 1290.05156, MR 3119646, 10.1142/S0219498813500850
Reference: [11] Zamani, Y., Ranjbari, M.: Induced operators on the space of homogeneous polynomials.Asian-Eur. J. Math. 9 (2016), Article ID 1650038, 15 pages. Zbl 06580479, MR 3486726, 10.1142/S1793557116500388
.

Files

Files Size Format View
CzechMathJ_68-2018-1_17.pdf 271.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo