Title:
|
On the maximal run-length function in the Lüroth expansion (English) |
Author:
|
Sun, Yu |
Author:
|
Xu, Jian |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
68 |
Issue:
|
1 |
Year:
|
2018 |
Pages:
|
277-291 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We obtain a metrical property on the asymptotic behaviour of the maximal run-length function in the Lüroth expansion. We also determine the Hausdorff dimension of a class of exceptional sets of points whose maximal run-length function has sub-linear growth rate. (English) |
Keyword:
|
Lüroth expansion |
Keyword:
|
run-length function |
Keyword:
|
Hausdorff dimension |
MSC:
|
11K55 |
MSC:
|
28A80 |
idZBL:
|
Zbl 06861581 |
idMR:
|
MR3783599 |
DOI:
|
10.21136/CMJ.2018.0474-16 |
. |
Date available:
|
2018-03-19T10:31:32Z |
Last updated:
|
2020-07-06 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/147135 |
. |
Reference:
|
[1] Dajani, K., Kraaikamp, C.: Ergodic Theory of Numbers.Carus Mathematical Monographs 29, Mathematical Association of America, Washington (2002). Zbl 1033.11040, MR 1917322 |
Reference:
|
[2] Erdős, P., Rényi, A.: On a new law of large numbers.J. Anal. Math. 23 (1970), 103-111. Zbl 0225.60015, MR 0272026, 10.1007/BF02795493 |
Reference:
|
[3] Falconer, K.: Fractal Geometry: Mathematical Foundations and Applications.Wiley & Sons, Chichester (1990). Zbl 0689.28003, MR 1102677 |
Reference:
|
[4] Galambos, J.: Representations of Real Numbers by Infinite Series.Lecture Notes in Mathematics 502, Springer, Berlin (1976). Zbl 0322.10002, MR 0568141, 10.1007/BFb0081642 |
Reference:
|
[5] Hutchinson, J. E.: Fractals and self-similarity.Indiana Univ. Math. J. 30 (1981), 713-747. Zbl 0598.28011, MR 0625600, 10.1512/iumj.1981.30.30055 |
Reference:
|
[6] Kesseböhmer, M., Munday, S., Stratmann, B. O.: Infinite Ergodic Theory of Numbers.De Gruyter Graduate, De Gruyter, Berlin (2016). Zbl 1362.37003, MR 3585883, 10.1515/9783110439427 |
Reference:
|
[7] Li, J., Wu, M.: On exceptional sets in Erdős-Rényi limit theorem.J. Math. Anal. Appl. 436 (2016), 355-365. Zbl 06536909, MR 3440098, 10.1016/j.jmaa.2015.12.001 |
Reference:
|
[8] Li, J., Wu, M.: On exceptional sets in Erdős-Rényi limit theorem revisited.Monatsh. Math. 182 (2017), 865-875. Zbl 06704122, MR 3624949, 10.1007/s00605-016-0977-y |
Reference:
|
[9] Lüroth, J.: Über eine eindeutige Entwickelung von Zahlen in eine unendliche Reihe.Math. Ann. 21 (1883), 411-423 German \99999JFM99999 15.0187.01. MR 1510205, 10.1007/BF01443883 |
Reference:
|
[10] Ma, J.-H., Wen, S.-Y., Wen, Z.-Y.: Egoroff's theorem and maximal run length.Monatsh. Math. 151 (2007), 287-292. Zbl 1170.28001, MR 2329089, 10.1007/s00605-007-0455-7 |
Reference:
|
[11] Moran, P. A. P.: Additive functions of intervals and Hausdorff measure.Proc. Camb. Philos. Soc. 42 (1946), 15-23. Zbl 0063.04088, MR 0014397, 10.1017/s0305004100022684 |
Reference:
|
[12] Révész, P.: Random Walk in Random and Non-random Environments.World Scientific, Hackensack (2005). Zbl 1090.60001, MR 2168855, 10.1142/5847 |
Reference:
|
[13] Sun, Y., Xu, J.: A remark on exceptional sets in Erdős-Rényi limit theorem.Monatsh. Math. 184 (2017), 291-296. Zbl 06788682, MR 3696113, 10.1007/s00605-016-0974-1 |
Reference:
|
[14] Wang, B. W., Wu, J.: On the maximal run-length function in continued fractions.Annales Univ. Sci. Budapest., Sect. Comp. 34 (2011), 247-268. |
Reference:
|
[15] Zou, R.: Hausdorff dimension of the maximal run-length in dyadic expansion.Czech. Math. J. 61 (2011), 881-888. Zbl 1249.11085, MR 2886243, 10.1007/s10587-011-0055-5 |
. |