Previous |  Up |  Next

Article

Title: A novel algorithm for the modeling of complex processes (English)
Author: Rubio, José de Jesús
Author: Lughofer, Edwin
Author: Plamen, Angelov
Author: Novoa, Juan Francisco
Author: Meda-Campaña, Jesús A.
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 54
Issue: 1
Year: 2018
Pages: 79-95
Summary lang: English
.
Category: math
.
Summary: In this investigation, a new algorithm is developed for the updating of a neural network. It is concentrated in a fuzzy transition between the recursive least square and extended Kalman filter algorithms with the purpose to get a bounded gain such that a satisfactory modeling could be maintained. The advised algorithm has the advantage compared with the mentioned methods that it eludes the excessive increasing or decreasing of its gain. The gain of the recommended algorithm is uniformly stable and its convergence is found. The new algorithm is employed for the modeling of two synthetic examples. (English)
Keyword: recursive least square
Keyword: Kalman filter
Keyword: modeling
Keyword: complex processes
MSC: 93A30
idZBL: Zbl 06861615
idMR: MR3780957
DOI: 10.14736/kyb-2018-1-0079
.
Date available: 2018-03-26T17:03:33Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147152
.
Reference: [1] Alanis, A. Y., Ricalde, L. J., Simetti, C., Odone, F.: Neural model with particle swarm optimization Kalman learning for forecasting in smart grids..Math. Problems Engrg. (2013), 9 pages. 10.1155/2013/197690
Reference: [2] Alanis, A. Y., Sanchez, E. N., Loukianov, A. G.: A wind speed neural model with particle swarm optimization Kalman learning..In: International Joint Conference on Neural Networks 2006, pp. 1993-2000.
Reference: [3] Alanis, A. Y., Simetti, C., Ricalde, L. J., Odone, F.: A wind speed neural model with particle swarm optimization Kalman learning..In: World Automation Congress 2012, pp. 1-5. MR 3063031
Reference: [4] Astrom, K. J., Wittenmark, B.: Adaptive Control. Second edition..Addison-Wesley Longman Publishing Co., Inc., Boston (1994).
Reference: [5] Bifet, A., Gavalda, R.: Kalman filters and adaptive windows for learning in data streams..In: Discovery Science (L. Todorovski, N. Lavrac, K. P. Jantke, eds.), Lecture Notes in Computer Science 4265 (2006), pp. 29-40, Springer, Berlin, Heidelberg. 10.1007/11893318
Reference: [6] Čelikovský, S.: Topological equivalence and topological linearization of controlled dynamical systems..Kybernetika 31 (1995), 141-150. MR 1334506
Reference: [7] Cerrada, M., Li, C., Sanchez, R. V., Pacheco, F., Cabrera, D., Valente, J.: A fuzzy transition based approach for fault severity prediction in helical gearboxes..Fuzzy Sets and Systems 337 (2018), 52-73. MR 3766926, 10.1016/j.fss.2016.12.017
Reference: [8] Chen, G., Xie, Q., Shieh, L. S.: Fuzzy Kalman filtering..J. Inform. Sci. 109 (1998), 197-209. MR 1634612, 10.1016/s0020-0255(98)10002-6
Reference: [9] Coelho, J. K., Pena, M.\.D., Romero, O. J.: Pore-scale modeling of oil mobilization trapped in a square cavity..IEEE Latin Amer. Trans. 14 (2016), 4, 1800-1807. 10.1109/tla.2016.7483518
Reference: [10] Deng, Z., Wang, X., Hong, Y.: Distributed optimisation design with triggers for disturbed continuous-time multi-agent systems..IET Control Theory Appl. 11 (2017), 2, 282-290. MR 3675134, 10.1049/iet-cta.2016.0795
Reference: [11] Dolinský, K., Čelikovský, S.: Kalman filter under nonlinear system transformations..In: American Control Conference 2012, pp. 4789-4794. 10.1109/acc.2012.6315366
Reference: [12] Guo, S. M., Shieh, L. S., Chen, G., Coleman, N. P.: Observer-type Kalman innovation filter for uncertain linear systems..IEEE Trans. Aerospace Eelectron. Systems 37 (2001), 4, 1406-1418. 10.1109/7.976975
Reference: [13] E.Guillermo, J., Castellanos, L. J. Ricalde, Sanchez, E. N., Alanis, A. Y.: Detection of heart murmurs based on radial wavelet neural network with Kalman learning..Neurocomputing 164 (2015), 307-317. 10.1016/j.neucom.2014.12.059
Reference: [14] Hernandez-Vargas, E. A., Colaneri, P., Middleton, R. H.: Switching strategies to mitigate HIV mutation..IEEE Trans. Control Systems Technol. 22 (2014), 4, 1623-1628. 10.1109/tcst.2013.2280920
Reference: [15] Hernandez-Vargas, E. A., Colaneri, P., Middleton, R. H.: Optimal therapy scheduling for a simplified HIV infection model..Automatica 49 (2013), 2874-2880. MR 3084477, 10.1016/j.automatica.2013.06.001
Reference: [16] Kalman, R. E.: A New approach to linear filtering and prediction problems..Trans. ASME, J. Basic Engrg. 82 (1960), 35-45. 10.1115/1.3662552
Reference: [17] Khemchandani, R., Pal, A., Chandra, S.: Fuzzy least squares twin support vector clustering..Neural Computing Appl. 29 (2018), 553-563. 10.1007/s00521-016-2468-4
Reference: [18] Lizasoain, I., Gomez, M.: Products of lattice-valued fuzzy transition systems and induced fuzzy transformation semigroups..Fuzzy Sets and Systems 317 (2017), 133-150. 10.1016/j.fss.2017.01.006
Reference: [19] Liu, F., Zhao, R., Tan, T., Zhang, Q.: Existence and verification for decentralized nondeterministic discrete-event systems under bisimulation equivalence..Asian J. Control 18 (2016), 5, 1679-1687. MR 3564277, 10.1002/asjc.1253
Reference: [20] Ljung, L.: System Identification: Theory for the User..Prentice Hall PTR, Prentic Hall Inc., Upper Saddle River, New Jersey 1999.
Reference: [21] Lughofer, E.: Evolving Fuzzy Systems - Methodologies, Advanced Concepts and Applications..Springer, Berlin, Heidelberg 2011.
Reference: [22] Lughofer, E.: Single-pass active learning with conflict and ignorance..Evolving Systems 3 (2012), 4, 251-271. 10.1007/s12530-012-9060-7
Reference: [23] Lughofer, E., Weigl, E., Heidl, W., Eitzinger, C., Radauer, T.: Recognizing input space and target concept drifts in data streams with scarcely labeled and unlabelled instances..Inform. Sci. 355-356 (2016), 127-151. 10.1016/j.ins.2016.03.034
Reference: [24] Mansouri, I., Gholampour, A., Kisi, O., Ozbakkaloglu, T.: Evaluation of peak and residual conditions of actively confined concrete using neuro-fuzzy and neural computing techniques..Neural Computing Appl. 29 (2018), 873-888. 10.1007/s00521-016-2492-4
Reference: [25] Nguyen, V. K., Klawonn, F., Mikolajczyk, R., Hernandez-Vargas, E. A.: Analysis of practical identifiability of a viral infection model..Plos One (2016), 1-16. 10.1371/journal.pone.0167568
Reference: [26] Pratama, M., Lu, J., Anavatti, S., Lughofer, E., Lim, C. P.: An incremental meta-cognitive-based scaffolding fuzzy neural network..Neurocomputing 171 (2016), 89-105. 10.1016/j.neucom.2015.06.022
Reference: [27] Rehák, B., Čelikovský, S.: Numerical method for the solution of the regulator equation with application to nonlinear tracking..Automatica 44 (2008), 1358-1365. MR 2531803, 10.1016/j.automatica.2007.10.015
Reference: [28] Rubio, J. J.: Least square neural network model of the crude oil blending process..Neural Networks 78 (2016), 88-96. 10.1016/j.neunet.2016.02.006
Reference: [29] Rubio, J. J.: Stable Kalman filter and neural network for the chaotic systems identification..J. Franklin Inst. 354 (2017), 7444-7462. 10.1016/j.jfranklin.2017.08.038
Reference: [30] Rubio, J. J.: SOFMLS: Online self-organizing fuzzy modified least square network..IEEE Trans. Fuzzy Systems 17 (2009), 6, 1296-1309. 10.1109/tfuzz.2009.2029569
Reference: [31] Sanchez, E. N., Alanis, A. Y., Rico, J.: Electric load demand prediction using neural networks trained by Kalman filtering..In: IEEE International Conference on Neural Networks 2004, pp. 2111-2775. 10.1109/ijcnn.2004.1381093
Reference: [32] Sun, X. M., Wang, X. F., Hong, Y., Xia, W.: Stabilization control design with parallel-triggering mechanism..IEEE Trans. Industr. Electron. 64 (2017), 3260-3267. 10.1109/tie.2016.2637888
Reference: [33] Weng, Z., Chen, G., Shieh, L. S., Larsson, J.: Evolutionary programming Kalman filter..Inform. Sci. 129 (2000), 197-210. MR 1802157, 10.1016/s0020-0255(00)00064-5
Reference: [34] Wu, H., Deng, Y.: Logical characterizations of simulation and bisimulation for fuzzy transition systems..Fuzzy Sets and Systems 301 (2016), 19-36. MR 3537844, 10.1016/j.fss.2015.09.012
Reference: [35] Wu, H., Deng, Y.: Distribution-based behavioural distance for nondeterministic fuzzy transition systems..IEEE Trans. Fuzzy Systems 99 (2017), 1-1. 10.1109/tfuzz.2017.2670605
Reference: [36] Wu, H., Chen, Y., Bu, T., Deng, Y.: Algorithmic and logical characterizations of bisimulations for non-deterministic fuzzy transition systems..Fuzzy Sets and Systems 333 (2017), 106-123. MR 3739684, 10.1016/j.fss.2017.02.008
Reference: [37] Xu, D., Wang, X., Hong, Y., Jiang, Z. P.: Global robust distributed output consensus of multi-agent nonlinear systems: an internal model approach.Systems Control Lett. 87 (2016), 64-69. MR 3433242, 10.1016/j.sysconle.2015.11.002
.

Files

Files Size Format View
Kybernetika_54-2018-1_6.pdf 464.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo