Previous |  Up |  Next

Article

Title: Controlling the stochastic sensitivity in thermochemical systems under incomplete information (English)
Author: Bashkirtseva, Irina
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 54
Issue: 1
Year: 2018
Pages: 96-109
Summary lang: English
.
Category: math
.
Summary: Complex dynamic regimes connected with the noise-induced mixed-mode oscillations in the thermochemical model of flow reactor are studied. It is revealed that the underlying reason of such excitability is in the high stochastic sensitivity of the equilibrium. The problem of stabilization of the excitable equilibrium regimes is investigated. We develop the control approach using feedback regulators which reduce the stochastic sensitivity and keep the randomly forced system near the stable equilibrium. We consider also a case when the information about system state is incomplete. Our new mathematical technique is applied to the stabilization of operating modes in the flow chemical reactors forced by random disturbances. (English)
Keyword: stabilization
Keyword: stochastic sensitivity
Keyword: flow reactor
Keyword: incomplete information
MSC: 60H10
MSC: 93E20
idZBL: Zbl 06861616
idMR: MR3780958
DOI: 10.14736/kyb-2018-1-0096
.
Date available: 2018-03-26T17:34:58Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147153
.
Reference: [1] Albert, A.: Regression and the Moore-Penrose Pseudoinverse..Academic Press, New York 1972. 10.1016/s0076-5392(08)x6167-3
Reference: [2] Anishchenko, V. S., Astakhov, V. V., Neiman, A. B., Vadivasova, T. E., Schimansky-Geier, L.: Nonlinear Dynamics of Chaotic and Stochastic Systems. Tutorial and Modern Development..Springer-Verlag, Berlin/Heidelberg 2007. MR 2298691
Reference: [3] Astrom, K. J.: Introduction to the Stochastic Control Theory..Academic Press, New York 1970. MR 0270799
Reference: [4] Bashkirtseva, I., Ryashko, L.: On control of stochastic sensitivity..Automat. Rem. Contr. 69 (2008), 1171-1180. MR 2442517, 10.1134/s0005117908070084
Reference: [5] Bashkirtseva, I., Chen, G., Ryashko, L.: Analysis of stochastic cycles in the Chen system..Int. J. Bifurcat. Chaos 20 (2010), 1439-1450. 10.1142/s0218127410026587
Reference: [6] Bashkirtseva, I., Chen, G., Ryashko, L.: Stochastic equilibria control and chaos suppression for 3D systems via stochastic sensitivity synthesis..Commun. Nonlinear Sci. Numer. Simul. 17 (2012), 3381-3389. MR 2904229, 10.1016/j.cnsns.2011.12.004
Reference: [7] Bashkirtseva, I., Chen, G., Ryashko, L.: Controlling the equilibria of nonlinear stochastic systems based on noisy data..J. Franklin Inst. 354 (2017), 1658-1672. MR 3596653, 10.1016/j.jfranklin.2016.11.011
Reference: [8] Gammaitoni, L., Hanggi, P., Jung, P., Marchesoni, F.: Stochastic resonance..Rev. Mod. Phys. 70 (1998), 223-287. 10.1103/revmodphys.70.223
Reference: [9] Gonzalez-Hernandez, J., Lopez-Martinez, R. R., Minjarez-Sosa, J. A.: Approximation, estimation and control of stochastic systems under a randomized discounted cost criterion..Kybernetika 45 (2009), 737-754.
Reference: [10] Guo, L., Wang, H.: Stochastic Distribution Control System Design: a Convex Optimization Approach..Springer-Verlag, New York 2010. 10.1007/978-1-84996-030-4
Reference: [11] Horsthemke, W., Lefever, R.: Noise-Induced Transitions. Theory and Applications in Physics, Chemistry, and Biology..Springer, Berlin 1984.
Reference: [12] Jakobsen, H. A.: Chemical Reactor Modeling: Multiphase Reactive Flows..Springer, Berlin 2014. 10.1007/978-3-319-05092-8
Reference: [13] Kawczyński, A. L., Nowakowski, B.: Stochastic transitions through unstable limit cycles in a model of bistable thermochemical system..Phys. Chem. Chem. Phys. 10 (2008), 289-296. 10.1039/b709867g
Reference: [14] Kushner, H. J.: Stochastic Stability and Control..Academic Press, New York 1967. MR 0216894
Reference: [15] Lindner, B., Garcia-Ojalvo, J., Neiman, A., Schimansky-Geier, L.: Effects of noise in excitable systems..Phys. Rep. 392 (2004), 321-424. 10.1016/j.physrep.2003.10.015
Reference: [16] Ryashko, L., Bashkirtseva, I.: Analysis of excitability for the FitzHugh-Nagumo model via a stochastic sensitivity function technique..Phys. Rev. E 83 (2011), 061109. 10.1103/physreve.83.061109
Reference: [17] Shen, B., Wang, Z., Shu, H.: Nonlinear Stochastic Systems with Incomplete Information, Filtering and Control..Springer, Berlin 2013. MR 3014902, 10.1007/978-1-4471-4914-9
Reference: [18] Sun, J.-Q.: Stochastic Dynamics and Control..Elsevier, Amsterdam 2006. MR 2404208, 10.1016/s1574-6917(06)04001-3
Reference: [19] Volter, B. V., Salnikov, I. Y.: Modeling and Optimization of Catalytic Processes (in Russian)..Nauka, Moscow 1996.
Reference: [20] Wonham, W.: On the separation theorem of stochastic control..SIAM J. Control 6 (1968), 312-326. 10.1137/0306023
Reference: [21] Zaks, M. A., Sailer, X., Schimansky-Geier, L.: Noise induced complexity: From subthreshold oscillations to spiking in coupled excitable systems..Chaos 15 (2005), 026117. MR 2150239, 10.1063/1.1886386
Reference: [22] Zhang, J., Liu, Y., Mu, X.: Further results on global adaptive stabilisation for a class of uncertain stochastic nonlinear systems.. 10.1080/00207179.2014.956339
Reference: [23] Zheng, Y., Wang, Q., Danca, M.-F.: Noise-induced complexity: patterns and collective phenomena in a small-world neuronal network..Cogn. Neurodyn. 8 (2014), 143-149. 10.1007/s11571-013-9257-x
.

Files

Files Size Format View
Kybernetika_54-2018-1_7.pdf 3.372Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo