Title:
|
Hölder continuity of bounded generalized solutions for some degenerated quasilinear elliptic equations with natural growth terms (English) |
Author:
|
Bonafede, Salvatore |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
59 |
Issue:
|
1 |
Year:
|
2018 |
Pages:
|
45-64 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We prove the local Hölder continuity of bounded generalized solutions of the Dirichlet problem associated to the equation $\sum_{i =1}^{m} \frac{\partial}{\partial x_i} a_i (x, u, \nabla u) - c_0 |u|^{p-2} u = f(x, u, \nabla u),$ assuming that the principal part of the equation satisfies the following degenerate ellipticity condition $\lambda (|u|) \sum_{i=1}^m a_i (x,u, \eta) \eta_i \geq \nu(x) |\eta|^p,$ and the lower-order term $f$ has a natural growth with respect to $\nabla u$. (English) |
Keyword:
|
elliptic equations |
Keyword:
|
weight function |
Keyword:
|
regularity of solutions |
MSC:
|
35B65 |
MSC:
|
35J15 |
MSC:
|
35J70 |
idZBL:
|
Zbl 06890396 |
idMR:
|
MR3783808 |
DOI:
|
10.14712/1213-7243.2015.242 |
. |
Date available:
|
2018-04-17T13:45:05Z |
Last updated:
|
2020-04-06 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/147178 |
. |
Reference:
|
[1] Bensoussan A., Boccardo L., Murat F.: On a nonlinear partial differential equation having natural growth terms and unbounded solution.Ann. Inst. Henri Poincaré 5 (1988), no. 4, 347–364. 10.1016/S0294-1449(16)30342-0 |
Reference:
|
[2] Boccardo L., Murat F., Puel J. P.: Existence de solutions faibles pour des équations elliptiques quasi-linéares à croissance quadratique.Nonlinear Partial Differential Equations and Their Applications, College de France Seminar, Vol. IV, Res. Notes in Math., 84, Pitman, London, 1983, 19–73 (French. English summary). |
Reference:
|
[3] Boccardo L., Murat F., Puel J. P.: Résultat d'existence pour certains problèmes elliptiques quasilinéaires.Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 11 (1984), no. 2, 213–235 (French). |
Reference:
|
[4] Bonafede S.: Quasilinear degenerate elliptic variational inequalities with discontinuous coefficients.Comment. Math. Univ. Carolin. 34 (1993), no. 1, 55–61. |
Reference:
|
[5] Bonafede S.: Existence and regularity of solutions to a system of degenerate nonlinear elliptic equations.Br. J. Math. Comput. Sci. 18 (2016), no. 5, 1–18. 10.9734/BJMCS/2016/28702 |
Reference:
|
[6] Bonafede S.: Existence of bounded solutions of Neumann problem for a nonlinear degenerate elliptic equation.Electron. J. Differential Equations 2017 (2017), no. 270, 1–21. |
Reference:
|
[7] Cirmi G. R., D'Asero S., Leonardi S.: Fourth-order nonlinear elliptic equations with lower order term and natural growth conditions.Nonlinear Anal. 108 (2014), 66–86. |
Reference:
|
[8] Del Vecchio T.: Strongly nonlinear problems with hamiltonian having natural growth.Houston J. Math. 16 (1990), no. 1, 7–24. |
Reference:
|
[9] Drábek P., Nicolosi F.: Existence of bounded solutions for some degenerated quasilinear elliptic equations.Ann. Mat. Pura Appl. 165 (1993), 217–238. 10.1007/BF01765850 |
Reference:
|
[10] Fabes E. B., Kenig C. E., Serapioni R. P.: The local regularity of solutions of degenerate elliptic equations.Comm. Partial Differential Equations 7 (1982), 77–116. 10.1080/03605308208820218 |
Reference:
|
[11] Gilbarg D., Trudinger N. S.: Elliptic Partial Differential Equations of Second Order.Springer, Berlin, 1983. Zbl 1042.35002 |
Reference:
|
[12] Guglielmino F., Nicolosi F.: $W$-solutions of boundary value problems for degenerate elliptic operators.Ricerche Mat. 36 (1987), suppl., 59–72. |
Reference:
|
[13] Guglielmino F., Nicolosi F.: Existence theorems for boundary value problems associated with quasilinear elliptic equations.Ricerche Mat. 37 (1988), 157–176. |
Reference:
|
[14] John F., Nirenberg L.: On functions of bounded mean oscillation.Comm. Pure Appl. Math. 14 (1961), 415–426. 10.1002/cpa.3160140317 |
Reference:
|
[15] Kovalevsky A., Nicolosi F.: Boundedness of solutions of variational inequalities with nonlinear degenerated elliptic operators of high order.Appl. Anal. 65 (1997), 225–249. 10.1080/00036819708840560 |
Reference:
|
[16] Kovalevsky A., Nicolosi F.: On Hölder continuity of solutions of equations and variational inequalities with degenerate nonlinear elliptic high order operators.Current Problems of Analysis and Mathematical Physics, Taormina 1998, Aracne, Rome, 2000, 205–220. |
Reference:
|
[17] Kovalevsky A., Nicolosi F.: Boundedness of solutions of degenerate nonlinear elliptic variational inequalities.Nonlinear Anal. 35 (1999), 987–999. 10.1016/S0362-546X(98)00110-2 |
Reference:
|
[18] Kovalevsky A., Nicolosi F.: On regularity up to the boundary of solutions to degenerate nonlinear elliptic high order equations.Nonlinear Anal. 40 (2000), 365–379. |
Reference:
|
[19] Ladyzhenskaya O., Ural'tseva N.: Linear and Quasilinear Elliptic Equations.translated from the Russian, Academic Press, New York-London, 1968. Zbl 0177.37404 |
Reference:
|
[20] Landes R.: Solvability of perturbed elliptic eqautions with critical growth exponent for the gradient.J. Math. Anal. Appl. 139 (1989), 63–77. 10.1016/0022-247X(89)90230-8 |
Reference:
|
[21] Moser J.: A new proof of De Giorgi's theorem concerning the regularity problem for elliptic differential equations.Comm. Pure Appl. Math. 13 (1960), pp. 457–468. 10.1002/cpa.3160130308 |
Reference:
|
[22] Murthy M. K. V., Stampacchia G.: Boundary value problems for some degenarate elliptic operators.Ann. Mat. Pura Appl. (4) 80 (1968), 1–122. 10.1007/BF02413623 |
Reference:
|
[23] Serrin J. B.: Local behavior of solutions of quasi-linear equations.Acta Math. 111 (1964), 247–302. 10.1007/BF02391014 |
Reference:
|
[24] Skrypnik I. V.: Nonlinear Higher Order Elliptic Equations.Naukova dumka, Kiev, 1973 (Russian). |
Reference:
|
[25] Skrypnik I. V.: Higher order quasilinear elliptic equations with continuous generalized solutions.Differ. Equ. 14 (1978), no. 6, 786–795. |
Reference:
|
[26] Trudinger N. S.: On Harnack type inequalities and their application to quasilinear elliptic equations.Comm. Pure Appl. Math. 20 (1967), 721–747. 10.1002/cpa.3160200406 |
Reference:
|
[27] Trudinger N. S.: On the regularity of generalized solutions of linear non-uniformly elliptic equations.Arch. Ration. Mech. Anal. 42 (1971), 51–62. 10.1007/BF00282317 |
Reference:
|
[28] Trudinger N. S.: Linear elliptic operators with measurable coefficients.Ann. Scuola Norm. Sup. Pisa 27 (1973), 265–308. |
Reference:
|
[29] Voitovich M. V.: Existence of bounded solutions for a class of nonlinear fourth-order equations.Differ. Equ. Appl. 3 (2011), no. 2, 247–266. |
Reference:
|
[30] Voitovich M. V.: Existence of bounded solutions for nonlinear fourth-order elliptic equations with strengthened coercivity and lower-terms with natural growth.Electron. J. Differential Equations 2013 (2013), no. 102, 25 pages. |
Reference:
|
[31] Voitovich M. V.: On the existence of bounded generalized solutions of the Dirichlet problem for a class of nonlinear high-order elliptic equations.J. Math. Sci. (N.Y.) 210 (2015), no. 1, 86–113. 10.1007/s10958-015-2550-y |
Reference:
|
[32] Voitovych M. V.: Hölder continuity of bounded generalized solutions for nonlinear fourth-order elliptic equations with strengthened coercivity and natural growth terms.Electron. J. Differential Equations 2017 (2017), no. 63, 18 pages. |
Reference:
|
[33] Zamboni P.: Hölder continuity for solutions of linear degenerate elliptic equations under minimal assumptions.J. Differential Equations 182 (2002), 121–140. 10.1006/jdeq.2001.4094 |
. |