Previous |  Up |  Next

Article

Title: A fast numerical test of multivariate polynomial positiveness with applications (English)
Author: Augusta, Petr
Author: Augustová, Petra
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 54
Issue: 2
Year: 2018
Pages: 289-303
Summary lang: English
.
Category: math
.
Summary: The paper presents a simple method to check a positiveness of symmetric multivariate polynomials on the unit multi-circle. The method is based on the sampling polynomials using the fast Fourier transform. The algorithm is described and its possible applications are proposed. One of the aims of the paper is to show that presented algorithm is significantly faster than commonly used method based on the semi-definite programming expression. (English)
Keyword: multidimensional systems
Keyword: positive polynomials
Keyword: fast Fourier transforms
Keyword: stability
Keyword: numerical algorithm
MSC: 12D10
MSC: 47N70
MSC: 65T50
MSC: 65Y20
idZBL: Zbl 06890421
idMR: MR3807716
DOI: 10.14736/kyb-2018-2-0289
.
Date available: 2018-05-30T16:04:25Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147195
.
Reference: [1] Ali, A., Ali, M.: Identification of Box-Jenkins model for spatially interconnected systems in closed-loop..Multidimensional Systems Signal Process. 28 (2016), 1-11. MR 3745050, 10.1007/s11045-016-0462-8
Reference: [2] Augusta, P.: A numerical test of positiveness on the unit circle based on the fast Fourier transform..In: Proc. 21st Mediterranean Conference on Control and Automation, 2013, pp. 1050-1054. 10.1109/med.2013.6608850
Reference: [3] Augusta, P.: A simple method for stabilisation of (2+1)D systems..In: Proc. 8th International Workshop on Multidimensional Systems, 2013, pp. 163-167.
Reference: [4] Augusta, P., Augustová, P.: On stabilisability of 2-D MIMO shift-invariant systems..J. Franklin Inst. 350 (2013), 2949-2966. MR 3123399, 10.1016/j.jfranklin.2013.05.021
Reference: [5] Augusta, P., Cichy, B., Galkowski, K., Rogers, E.: An unconditionally stable finite difference scheme systems described by second order partial differential equations..In: Proc. IEEE 9th International Workshop on Multidimensional Systems, 2015, pp. 134-139. 10.1109/nds.2015.7332655
Reference: [6] Augusta, P., Cichy, B., Galkowski, K., Rogers, E.: An unconditionally stable approximation of a circular flexible plate described by a fourth order partial differential equation..In: Proc. 21st International Conference on Methods and Models in Automation and Robotics, 2016. 10.1109/mmar.2016.7575281
Reference: [7] Augusta, P., Hurák, Z.: Distributed stabilisation of spatially invariant systems - positive polynomial approach..Multidimensional Systems Signal Process. 24 (2013), 3-21. MR 3016749, 10.1007/s11045-011-0152-5
Reference: [8] Bose, N. K.: Multidimensional Systems Theory - Progress, Directions and Open Problems in Multidimensional Systems..D. Riedel Publishing Company, 1985. MR 0804981, 10.1007/978-94-009-5225-6
Reference: [9] Bose, N. K.: Multidimensional Systems Theory and Applications. Second edition..Kluwer Academic Publishers, 2003. MR 2039820
Reference: [10] Cichy, B., Gałkowski, K., Rogers, E.: Iterative learning control for spatio-temporal dynamics using Crank-Nicolson discretization.Multidimensional Systems Signal Process. 23 (2012), 185-208. MR 2875114
Reference: [11] Cichy, B., Gałkowski, K., Rogers, E., Kummert, A.: An approach to iterative learning control for spatio-temporal dynamics using nD discrete linear systems models..Multidimensional Systems Signal Process. 22 (2011), 83-96. MR 2771473, 10.1007/s11045-010-0108-1
Reference: [12] Cichy, B., Hladowski, L., Gałkowski, K., Rauh, A., Aschemann, H.: Iterative learning control of an electrostatic microbridge actuator with polytopic uncertainty models..IEEE Trans. Control Systems Technol. 23 (2015), 2035-2043. 10.1109/tcst.2015.2394236
Reference: [13] Cooley, J. W., Tukey, J. W.: An algorithm for the machine calculation of complex Fourier series..Mathematics of Computation 19 (1965), 297-301. MR 0178586, 10.2307/2003354
Reference: [14] Dumitrescu, B.: Sum-of-squares polynomials and the stability of discrete-time systems..In: Proc. Fourth International Workshop on Multidimensional Systems, 2005, pp. 223-228. 10.1109/nds.2005.195358
Reference: [15] Dumitrescu, B.: Stability test of multidimensional discrete-time systems via sum-of-squares decomposition..IEEE Trans. Circuts Systems 53 (2006), 928-936. MR 2235849, 10.1109/tcsi.2005.859624
Reference: [16] Dumitrescu, B.: Positive Trigonometric Polynomials and Signal Processing Applications..Springer, 2007. MR 2309555
Reference: [17] Dumitrescu, B.: Positivstellensatz for trigonometric polynomials and multidimensional stability tests..IEEE Trans. Circuits Systems 54 (2007), 353-356. 10.1109/tcsii.2006.890409
Reference: [18] Dumitrescu, B., Şicleru, B. C., Ştefan, R.: Minimax design of adjustable FIR filters using 2D polynomial methods..In: Proc. IEEE International Conference on Acoustics, Speech and Signal Processing, 2009, pp. 3181-3184. 10.1109/icassp.2009.4960300
Reference: [19] Henrion, D., Garulli, A.: Positive Polynomials in Control.
Reference: [20] Kaczorek, T.: Positive 1D and 2D Systems..Springer, London 2002. 10.1007/978-1-4471-0221-2
Reference: [21] Kaczorek, T.: Selected Problems of Fractional Systems Theory..Springer, Berlin 2011. Zbl 1221.93002, MR 2798773
Reference: [22] Löfberg, J.: Yalmip - a toolbox for modeling and optimization in MATLAB..In: Proc. CACSD Conference, 2004. 10.1109/cacsd.2004.1393890
Reference: [23] MATLAB: version 9.2.0.538062 (R2017a)..MathWorks, Natick 2017.
Reference: [24] Paszke, W.: Analysis and Synthesis of Multidimensional System Classes Using Linear Matrix Inequality Methods..University of Zielona Góra Press, Zielona Góra 2005. MR 2796590
Reference: [25] Rabenstein, R., Steffen, P.: Numerical iterative methods and repetitive processes..Multidimensional Systems Signal Process. 23 (2012), 163-183. MR 2875113, 10.1007/s11045-010-0115-2
Reference: [26] Ramos, J., Mercère, G.: Subspace algorithm for identifying separable in denominator 2-D systems with deterministic-stochastic inputs..Int. J. Control 89 (2016), 2584-2610. MR 3576751, 10.1080/00207179.2016.1172258
Reference: [27] Rogers, E., Gałkowski, K., Owens, D. H.: Control Systems Theory and Applications for Linear Repetitive Processes..Springer, 2007. MR 2313304
Reference: [28] Rogers, E., Gałkowski, K., Paszke, W., Moore, K. L., Bauer, P. H., Hladowski, L., Dabkowski, P.: Multidimensional control systems - case studies in design and evaluation..Multidimensional Systems Signal Process. 26 (2015), 895-939. MR 3401856, 10.1007/s11045-015-0341-8
Reference: [29] Strintzis, M. G.: Test of stability of multidimensional filters..IEEE Trans. Automat. Control 24 (1977), 432-437. MR 0497276, 10.1109/tcs.1977.1084368
Reference: [30] Sturm, J. F.: Using SeDuMi 1.02, a Matlab toolbox for optimization over symmetric cones..Optimiz. Methods Software 11 (1999), 625-653. MR 1778433, 10.1080/10556789908805766
Reference: [31] Sulikowski, B., Galkowski, K., Kummert, A.: Proportional plus integral control of ladder circuits modeled in the form of two-dimensional (2D) systems..Multidimensional Systems Signal Process. 26 (2015), 267-290. MR 3300512, 10.1007/s11045-013-0256-1
Reference: [32] Sulikowski, B., Galkowski, K., Kummert, A.: Stability and stabilisation of active ladder circuits modeled in the form of two-dimensional (2D) systems..In: Proc. IEEE 9th International Workshop on Multidimensional Systems, 2015. MR 3300512, 10.1109/nds.2015.7332654
Reference: [33] Zhang, F.: The Schur Complement and its Applications..Springer, 2005. MR 2160825, 10.1007/b105056
.

Files

Files Size Format View
Kybernetika_54-2018-2_5.pdf 757.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo