Previous |  Up |  Next

Article

Title: Consensus seeking of delayed high-order multi-agent systems with predictor-based algorithm (English)
Author: Liu, Cheng-Lin
Author: Liu, Fei
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 54
Issue: 2
Year: 2018
Pages: 304-320
Summary lang: English
.
Category: math
.
Summary: This paper investigates the high-order consensus problem for the multi-agent systems with agent's dynamics described by high-order integrator, and adopts a general consensus algorithm composed of the states' coordination control. Under communication delay, consensus algorithm in usual asynchronously-coupled form just can make the agents achieve a stationary consensus, and sufficient consensus condition is obtained based on frequency-domain analysis. Besides, a predictor-based consensus algorithm is constructed via multiplying the delayed neighboring agents' states by a delay-related compensation part. In our proposed algorithm, a compensating delay is introduced to match the communication delay. Specially, the original high-order consensus is regained when the compensating delay equals to the communication delay, but cannot be achieved if the compensating delay is not equivalent to the communication delay. Moreover, sufficient consensus convergence conditions are also obtained for the agents under our predictor-based algorithm with different compensating delay. Numerical studies for multiple quadrotors illustrate the correctness of our results. (English)
Keyword: high-order multi-agent system
Keyword: consensus
Keyword: communication delay
Keyword: predictor-based consensus algorithm
Keyword: multiple quadrotors
MSC: 93A14
MSC: 93C85
idZBL: Zbl 06890422
idMR: MR3807717
DOI: 10.14736/kyb-2018-2-0304
.
Date available: 2018-05-30T16:06:32Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147196
.
Reference: [1] Bresch-Pietri, D., Krstic, M.: Delay-adaptive predictor feedback for systems with unknown long actuator delay..IEEE Trans. Autom. Control 55 (2010), 2106-2112. MR 2722480, 10.1109/tac.2010.2050352
Reference: [2] Cepeda-Gomez, R., Olgac, N.: A consensus protocol under directed communications with two time delays and delay scheduling..Int. J. Control 87 (2014), 291-300. MR 3172506, 10.1080/00207179.2013.829605
Reference: [3] Chamseddine, A., Zhang, Y., Rabbath, C. A.: Trajectory planning and re-planning for fault tolerant formation flight control of quadrotor unmanned aerial vehicles.
Reference: [4] Cui, Y., Jia, Y.: Robust $L_2-L_{\infty}$ consensus control for uncertain highorder multi-agent systems with time-delay..Int. J. Syst. Sci. 45 (2014), 427-438. MR 3172823, 10.1080/00207721.2012.724096
Reference: [5] He, W., Cao, J.: Consensus control for high-order multi-agent systems..IET Control Theory Appl. 5 (2011), 231-238. MR 2807959, 10.1049/iet-cta.2009.0191
Reference: [6] Hu, J., Hong, Y.: Leader-following coordination of multi-agent systems with coupling time delays..Physica A 374 (2007), 853-863. 10.1016/j.physa.2006.08.015
Reference: [7] Huang, N., Duan, Z., Chen, G.: Some necessary and sufficient conditions for consensus of second-order multi-agent systems with sampled position data..Automatica 63, 148-155. MR 3429980, 10.1016/j.automatica.2015.10.020
Reference: [8] Lin, Z., Francis, B., Maggiore, M.: Necessary and sufficient graphical conditions for formation control of unicycles..IEEE Trans. Autom. Control 50 (2005), 121-127. MR 2110819, 10.1109/tac.2004.841121
Reference: [9] Li, S., Du, H., Lin, X.: Finite-time consensus algorithm for multi-agent systems with double-integrator dynamics..Automatica 47 (2011), 1706-1712. Zbl 1226.93014, MR 2886774, 10.1016/j.automatica.2011.02.045
Reference: [10] Lin, P., Jia, Y.: Consensus of second-order discrete-time multi-agent systems with nonuniform time-delays and dynamically changing topologies..Automatica 45 (2009), 2154-2158. MR 2889282, 10.1016/j.automatica.2009.05.002
Reference: [11] Lin, P., Li, Z., Jia, Y., Sun, M.: High-order multi-agent consensus with dynamically changing topologies and time-delays..IET Control Theory Appl. 5 (2011), 976-981. MR 2850145, 10.1049/iet-cta.2009.0649
Reference: [12] Liu, C.-L., Liu, F.: Stationary consensus of heterogeneous multi-agent systems with bounded communication delays..Automatica 47 (2011), 2130-2133. MR 2886833, 10.1016/j.automatica.2011.06.005
Reference: [13] Liu, C.-L., Liu, F.: Dynamical consensus seeking of second-order multi-agent systems based on delayed state compensation..Syst. Control Lett. 61 (2012), 1235-1241. MR 2998209, 10.1016/j.sysconle.2012.09.006
Reference: [14] Liu, C.-L., Liu, F.: Consensus analysis for multiple autonomous agents with input delay and communication delay..Int. J. Control Automat. Syst. 10 (2012), 1005-1012. 10.1007/s12555-012-0518-y
Reference: [15] Liu, Y., Jia, Y.: Consensus problem of high-order multi-agent systems with external disturbances: an $H_{\infty}$ analysis approach..Int. J. Robust Nonlin. Control 20 (2010), 1579-1593. MR 2724254, 10.1002/rnc.1531
Reference: [16] Liu, C.-L., Tian, Y.-P.: Formation control of multi-agent systems with heterogeneous communication delays..Int. J. Syst. Sci. 40 (2009), 627-636. MR 2541000, 10.1080/00207720902755762
Reference: [17] Miao, G., Xun, S., Zou, Y.: Consentability for high-order multi-agent systems under noise environment and time delays..J. Franklin Inst. 350 (2013), 244-257. MR 3020296, 10.1016/j.jfranklin.2012.10.015
Reference: [18] Munz, U., Papachristodoulou, A., Allgower, F.: Delay robustness in consensus problems..Automatica 46 (2010), 1252-1265. MR 2877237, 10.1016/j.automatica.2010.04.008
Reference: [19] Olfati-Saber, R., Murray, R.: Consensus problems in networks of agents with switching topology and time-delays..IEEE Trans. Autom. Control 49 (2004), 1520-1533. MR 2086916, 10.1109/tac.2004.834113
Reference: [20] Peng, J. M., Wang, J. N., Shan, J. Y.: Robust cooperative output tracking of networked high-order power integrators systems..Int. J. Control, published online. MR 3435198
Reference: [21] Qin, J., Yu, C., Hirche, S.: Stationary consensus of asynchronous discrete-Time second-order multi-agent systems under switching topology..IEEE Trans. Ind. Inf. 8(2012), 986-994. MR 3306909, 10.1109/tii.2012.2210430
Reference: [22] Ren, W., Moore, K., Chen, Y.: High-order consensus algorithms in cooperative vehicle systems..In: Proc. IEEE International Conference on Networking Sensing and Control, Ft Lauderdale 2006, pp. 457-462. 10.1109/icnsc.2006.1673189
Reference: [23] Su, H., Chen, M. Z. Q., Wang, X., Lam, J.: Semiglobal observer-based leader-following consensus with input saturation..IEEE Trans. Ind. Electron. 61 (2014), 2842-2850. 10.1109/tie.2013.2275976
Reference: [24] Sun, Y., Wang, L., G, G. Xie: Average consensus in networks of dynamic agents with switching topologies and multiple time-varying delays..Syst. Control Lett. 57 (2008), 175-183. MR 2378763, 10.1016/j.sysconle.2007.08.009
Reference: [25] Tian, Y. P., Zhang, Y.: High-order consensus of heterogeneous multi-agent systems with unknown communication delays..Automatica 48 (2012), 1205-1212. MR 2917533, 10.1016/j.automatica.2012.03.017
Reference: [26] Vicsek, T., Zafeiris, A.: Collective motion..Physics Rep. 517 (2012), 71-140. 10.1016/j.physrep.2012.03.004
Reference: [27] Wang, W., Slotine, J. J. E.: Contraction analysis of time-delayed communication delays..IEEE Trans. Autom. Control 51 (2006), 712-717. MR 2228040, 10.1109/tac.2006.872761
Reference: [28] Wang, Y., Wu, Q., Wang, Y.: Distributed consensus protocols for coordinated control of multiple quadrotors under a directed topology..IET Control Theory Appl. 7 (2013), 1780-1792. MR 3136623, 10.1049/iet-cta.2013.0027
Reference: [29] Xi, J., Xu, Z., Liu, G., Zhong, Y.: Stable-protocol output consensus for high-order linear swarm systems with time-varying delays..IET Control Theory Appl. 7 (2013), 975-984. MR 3100353, 10.1049/iet-cta.2012.0824
Reference: [30] Yang, B.: Stability switches of arbitrary high-order consensus in multiagent networks with time delays..Sci. World J. (2013), 514823. 10.1155/2013/514823
Reference: [31] Yang, W., Bertozzi, A. L., Wang, X. F.: Stability of a second order consensus algorithm with time delay..In: Proc. 47th IEEE Conference on Decision and Control, Cancun 2008, pp. 2926-2931. 10.1109/cdc.2008.4738951
Reference: [32] Yang, T., Jin, Y. H., Wang, W., Shi, Y. J.: Consensus of high-order continuous-time multi-agent systems with time-delays and switching topologies..Chin. Phys. B 20 (2011), 020511. 10.1088/1674-1056/20/2/020511
Reference: [33] Yu, W., Chen, G., Cao, M.: Some necessary and sufficient conditions for second-order consensus in multi-agent dynamical systems..Automatica 46 (2010), 1089-1095. MR 2877192, 10.1016/j.automatica.2010.03.006
Reference: [34] Yu, W., Chen, G., Ren, W., Kurths, J., Zheng, W.: Distributed higher order consensus protocols in multiagent dynamical systems..IEEE Trans. Circuits Syst. I Regul. Pap. 58 (2011), 1924-1932. MR 2857624, 10.1109/tcsi.2011.2106032
Reference: [35] Yu, Z., Jiang, H., Hu, C., Yu, J.: Leader-following consensus of fractional-order multi-agent systems via adaptive pinning control..Int. J. Control 88 (2015), 1746-1756. MR 3371084, 10.1080/00207179.2015.1015807
Reference: [36] Yu, W., Zheng, W. X., Chen, G., Ren, W., Cao, J.: Second-order consensus in multi-agent dynamical systems with sampled position data..Automatica 47 (2011), 1496-1503. MR 2889249, 10.1016/j.automatica.2011.02.027
Reference: [37] Yu, W., Zhou, L., Yu, X., Lv, J., Lu, R.: Consensus in multi-agent systems with second-order dynamics and sampled data..IEEE Trans. Ind. Inf. 9 (2013), 2137-2146. 10.1109/tii.2012.2235074
Reference: [38] Zhang, Q., Niu, Y., Wang, L., Shen, L., Zhu, H.: Average consensus seeking of high-order continuous-time multi-agent systems with multiple time-varying communication delays..Int. J. Control Autom. Syst. 9 (2011), 1209-1218. 10.1007/s12555-011-0623-3
Reference: [39] Zhu, W., Cheng, D.: Leader-following consensus of second-order agents with multiple time-varying delays..Automatica 46 (2010), 1994-1999. MR 2878222, 10.1016/j.automatica.2010.08.003
Reference: [40] Zhu, J., Yuan, L.: Consensus of high-order multi-agent systems with switching topologies..Linear Algebra Appl. 443 (2014), 105-119. MR 3148896, 10.1016/j.laa.2013.11.017
.

Files

Files Size Format View
Kybernetika_54-2018-2_6.pdf 1.021Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo