Previous |  Up |  Next

Article

Title: Stationarity and invertibility of a dynamic correlation matrix (English)
Author: McAleer, Michael
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 54
Issue: 2
Year: 2018
Pages: 363-374
Summary lang: English
.
Category: math
.
Summary: One of the most widely-used multivariate conditional volatility models is the dynamic conditional correlation (or DCC) specification. However, the underlying stochastic process to derive DCC has not yet been established, which has made problematic the derivation of asymptotic properties of the Quasi-Maximum Likelihood Estimators (QMLE). To date, the statistical properties of the QMLE of the DCC parameters have purportedly been derived under highly restrictive and unverifiable regularity conditions. The paper shows that the DCC model can be obtained from a vector random coefficient moving average process, and derives the stationarity and invertibility conditions of the DCC model. The derivation of DCC from a vector random coefficient moving average process raises three important issues, as follows: (i) demonstrates that DCC is, in fact, a dynamic conditional covariance model of the returns shocks rather than a dynamic conditional correlation model; (ii) provides the motivation, which is presently missing, for standardization of the conditional covariance model to obtain the conditional correlation model; and (iii) shows that the appropriate ARCH or GARCH model for DCC is based on the standardized shocks rather than the returns shocks. The derivation of the regularity conditions, especially stationarity and invertibility, may subsequently lead to a solid statistical foundation for the estimates of the DCC parameters. Several new results are also derived for univariate models, including a novel conditional volatility model expressed in terms of standardized shocks rather than returns shocks, as well as the associated stationarity and invertibility conditions. (English)
Keyword: dynamic conditional correlation
Keyword: dynamic conditional covariance
Keyword: vector random coefficient moving average
Keyword: stationarity
Keyword: invertibility
Keyword: asymptotic properties
MSC: 62C22
MSC: 62C52
MSC: 62C58
MSC: 62G32
MSC: 62M10
idZBL: Zbl 06890426
idMR: MR3807721
DOI: 10.14736/kyb-2018-2-0363
.
Date available: 2018-05-30T16:12:24Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147200
.
Reference: [1] Aielli, G. P.: Dynamic conditional correlations: On properties and estimation..J. Business Econom. Statist. 31 (2013), 282-299. MR 3173682, 10.1080/07350015.2013.771027
Reference: [2] Amemiya, T.: Advanced Econometrics..Harvard University Press, Cambridge 1985.
Reference: [3] Baba, Y., Engle, R. F., Kraft, D., Kroner, K. F.: Multivariate simultaneous generalized ARCH..Unpublished manuscript, Department of Economics, University of California, San Diego 1985, (the published version is given in Engle and Kroner [16]). MR 1325104
Reference: [4] Bollerslev, T.: Generalised autoregressive conditional heteroscedasticity..J. Econometr. 31 (1986), 307-327. MR 0853051, 10.1016/0304-4076(86)90063-1
Reference: [5] Caporin, M., McAleer, M.: Ten things you should know about the dynamic conditional correlation representation..Econometrics 1 (2013), 1, 115-126. 10.3390/econometrics1010115
Reference: [6] Chang, C.-L., McAleer, M.: A simple test for causality in volatility..Econometrics 5 (2017), 1, 5 pp. 10.3390/econometrics5010015
Reference: [7] Chang, C.-L., McAleer, M., Tansuchat, R.: Modelling conditional correlations for risk diversification in crude oil markets..J. Energy Markets 2 (2009/10), 4, 1-23. 10.2139/ssrn.1401331
Reference: [8] Chang, C.-L., McAleer, M., Tansuchat, R.: Analyzing and forecasting volatility spillovers, asymmetries and hedging in major oil markets..Energy Economics 32 (2010), 1445-1455. 10.1016/j.eneco.2010.04.014
Reference: [9] Chang, C.-L., McAleer, M., Tansuchat, R.: Crude oil hedging strategies using dynamic multivariate GARCH..Energy Economics 33 (2011), 5, 912-923. 10.1016/j.eneco.2011.01.009
Reference: [10] Chang, C.-L., McAleer, M., Tansuchat, R.: Conditional correlations and volatility spillovers between crude oil and stock index returns..North Amer. J. Econom. Finance 25 (2013), 116-138. 10.1016/j.najef.2012.06.002
Reference: [11] Chang, C.-L., McAleer, M., Wang, Y.-A.: Modelling volatility spillovers for bio-ethanol, sugarcane and corn spot and futures prices..Renewable Sustainable Energy Rev. 81 (2018), 1, 1002-1018. 10.1016/j.rser.2017.07.024
Reference: [12] Chang, C.-L., McAleer, M., Zuo, G. D.: Volatility spillovers and causality of carbon emissions, oil and coal spot and futures for the EU and USA..Sustainability 9 (2017), 10, p. 1789, 1-22. 10.3390/su9101789
Reference: [13] Duan, J.-C.: Augmented GARCH$(p,q)$ process and its diffusion limit..J. Econometrics 79 (1997), 97-127. MR 1457699, 10.1016/s0304-4076(97)00009-2
Reference: [14] Engle, R. F.: Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation..Econometrica 50 (1982), 987-1007. MR 0666121, 10.2307/1912773
Reference: [15] Engle, R. F.: Dynamic conditional correlation: A simple class of multivariate generalized autoregressive conditional hereoskedasticity models..J. Business Econom. Statist. 20 (2002), 339-350. MR 1939905, 10.1198/073500102288618487
Reference: [16] Engle, R. F., Kroner, K. F.: Multivariate simultaneous generalized ARCH..Econometr. Theory 11 (1995), 122-150. MR 1325104, 10.1017/s0266466600009063
Reference: [17] Hentschel, L.: All in the family: Nesting symmetric and asymmetric GARCH models..J. Financial Economics 39 (1995), 71-104. 10.1016/0304-405x(94)00821-h
Reference: [18] Jeantheau, T.: Strong consistency of estimators for multivariate ARCH models..Econometr. Theory 14 (1998), 70-86. MR 1613694, 10.1017/s0266466698141038
Reference: [19] Ling, S., McAleer, M.: Asymptotic theory for a vector ARMA-GARCH model..Econometr. Theory 19 (2003), 280-310. MR 1966031,
Reference: [20] Marek, T.: On invertibility of a random coefficient moving average model..Kybernetika 41 (2005), 01, 743-756. MR 2193863
Reference: [21] McAleer, M., Chan, F., Hoti, S., Lieberman, O.: Generalized autoregressive conditional correlation..Econometr. Theory 24 (2008), 6, 1554-1583. MR 2456538, 10.1017/s0266466608080614
Reference: [22] Tsay, R. S.: Conditional heteroscedastic time series models..J. Amer. Statist. Assoc. 82 (1987), 590-604. MR 0898364, 10.2307/2289470
Reference: [23] Tse, Y. K., Tsui, A. K. C.: A multivariate GARCH model with time-varying correlations..J. Business Econom. Statist. 20 (2002), 351-362. MR 1939906, 10.1198/073500102288618496
.

Files

Files Size Format View
Kybernetika_54-2018-2_10.pdf 426.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo