Previous |  Up |  Next

Article

Title: QMLE of periodic bilinear models and of PARMA models with periodic bilinear innovations (English)
Author: Bibi, Abdelouahab
Author: Ghezal, Ahmed
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 54
Issue: 2
Year: 2018
Pages: 375-399
Summary lang: English
.
Category: math
.
Summary: This paper develops an asymptotic inference theory for bilinear $\left( BL\right) $ time series models with periodic coefficients $\left( PBL\text{ for short}\right) $. For this purpose, we establish firstly a necessary and sufficient conditions for such models to have a unique stationary and ergodic solutions (in periodic sense). Secondly, we examine the consistency and the asymptotic normality of the quasi-maximum likelihood estimator $\left( QMLE\right) $ under very mild moment condition for the innovation errors. As a result, it is shown that whenever the model is strictly stationary, the moment of some positive order of $PBL$ model exists and is finite, under which the strong consistency and asymptotic normality of $QMLE$ for $PBL$ are proved. Moreover, we consider also the periodic $ARMA$ $\left( PARMA\right) $ models with $PBL$ innovations and we prove the consistency and the asymptotic normality of its $QMLE$. (English)
Keyword: periodic bilinear model
Keyword: periodic $ARMA$ model
Keyword: strict and second-order periodic stationarity
Keyword: strong consistency
Keyword: asymptotic normality
MSC: 62M10
MSC: 62M15
idZBL: Zbl 06890427
idMR: MR3807722
DOI: 10.14736/kyb-2018-2-0375
.
Date available: 2018-05-30T16:14:21Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147201
.
Reference: [1] Aknouche, A., Bibi, A.: Quasi-maximum likelihood estimation of periodic $GARCH$ and periodic $ARMA-GARCH$ processes..J. Time Ser. Anal. 30 (2008), 1, 19-46. MR 2488634, 10.1111/j.1467-9892.2008.00598.x
Reference: [2] Aknouche, A., Guerbyenne, H.: Periodic stationarity of random coefficient periodic autoregressions..Statist. Probab. Lett. 79 (2009), 7, 990-996. MR 2509491, 10.1016/j.spl.2008.12.012
Reference: [3] Aknouche, A., Bibi, A.: Quasi-maximum likelihood estimation of periodic $GARCH$ and periodic $ARMA-GARCH$ processes..J. Time Ser. Anal. 30 (2008), 1, 19-46. MR 2488634, 10.1111/j.1467-9892.2008.00598.x
Reference: [4] Basawa, I. V., Lund, R.: Large sample properties of parameters estimates for periodic $ARMA$ models..J. Time Series Anal. 22 (2001), 6, 651-663. MR 1867391, 10.1111/1467-9892.00246
Reference: [5] Bibi, A.: On the covariance structure of time-varying bilinear models..Stochastic Anal. App. 21 (2003), 1, 25-60. MR 1954074, 10.1081/sap-120017531
Reference: [6] Bibi, A., Francq, C.: Consistent and asymptotically normal estimators for cyclically time-dependent linear models..Ann. Inst. Statist. Math. 55 (2003), 1, 41-68. MR 1965962, 10.1007/bf02530484
Reference: [7] Bibi, A., Oyet, A. J.: Estimation of some bilinear time series models with time-varying coefficients..Stochastic Anal. Appl. 22 (2004), 2, 355-376. MR 2037377, 10.1081/sap-120028595
Reference: [8] Bibi, A., Aknouche, A.: Yule-Walker type estimators in periodic bilinear models: strong consistency and asymptotic normality..Statist. Methods Appl. 19 (2010), 1, 1-30. MR 2591755, 10.1007/s10260-008-0110-z
Reference: [9] Bibi, A., Lessak, R.: On stationarity and $\beta$-mixing of periodic bilinear processes..Statist. Probab. Lett. 79 (2009), 1, 79-87. MR 2483399, 10.1016/j.spl.2008.07.024
Reference: [10] Bibi, A., Lescheb, I.: On general periodic time-varying bilinear processes..Econom. Lett. 114 (2012), 3, 353-357. MR 2880617, 10.1016/j.econlet.2011.11.013
Reference: [11] Bibi, A., Ghezal, A.: On periodic time-varying bilinear processes: Structure and asymptotic inference..Stat. Methods Appl. 25 (2016), 3, 395-420. MR 3539499, 10.1007/s10260-015-0344-5
Reference: [12] Billingsley, P.: Probability and Measure. Third edition..Wiley - Interscience 1995. MR 1324786
Reference: [13] Bougerol, P., Picard, N.: Strict stationarity of generalized autoregressive processes..Ann. Probab. 20 (1992), 4, 1714-1730. MR 1188039, 10.1214/aop/1176989526
Reference: [14] Boyles, R. A., Gardner, W. A.: Cycloergodic properties of discrete-parameter nonstationary stochastic processes..IEEE, Trans. Inform. Theory 29 (1983), 105-114. MR 0711279, 10.1109/tit.1983.1056613
Reference: [15] Brandt, A.: The stochastic equation $Y_{n+1}=A_{n}Y_{n-1}+B_{n}$ with stationary coefficients..Adv. Appl. Probab. 18 (1986), 1, 211-220. MR 0827336, 10.2307/1427243
Reference: [16] Chatterjee, S., Das, S.: Parameter estimation in conditional heteroscedastic models..Comm. Stat. Theory Methods 32 (2003), 6, 1135-1153. MR 1983236, 10.1081/sta-120021324
Reference: [17] Florian, Z.: Quasi-maximum likelihood estimation of periodic autoregressive, conditionally heteroscedastic..Time Series. Stochastic Models, Statistics and their Applications 122 (2015), 207-214. 10.1007/978-3-319-13881-7_23
Reference: [18] Francq, C., Roy, R., Saidi, A.: Asymptotic properties of weighted least squares estimation in weak PARMA models..J. of Time Ser. Anal. 32 (2011), 699-723. MR 2846568, 10.1111/j.1467-9892.2011.00728.x
Reference: [19] Francq, C.: ARMA models with bilinear innovations..Comm. Statist. Stochastic Models 15 (1999), 1, 29-52. MR 1674085, 10.1080/15326349908807524
Reference: [20] Francq, C., Zakoîan, J. M.: Maximum likelihood estimation of pure $GARCH$ and $ARMA-GARCH$ processes..Bernoulli 10 (2004), 4, 605-637. MR 2076065, 10.3150/bj/1093265632
Reference: [21] Gardner, W. A., Nopolitano, A., Paura, L.: Cyclostationarity: Half a century of research..Signal Process. 86 (2006), 4, 639-697. 10.1016/j.sigpro.2005.06.016
Reference: [22] Gladyshev, E. G.: Periodically correlated random sequences..Soviet Math. 2 (1961), 385-388. MR 0126873
Reference: [23] Grahn, T.: A conditional least squares approach to bilinear time series estimation..J. Time Series Analysis 16 (1995), 509-529. MR 1365644, 10.1111/j.1467-9892.1995.tb00251.x
Reference: [24] He, J., Yu, S., Cai, J.: Numerical Analysis and improved algorithms for Lyapunov-exponent calculation of discrete-time chaotic systems..Int. J. Bifurcation Chaos 26 (2016), 13, 1-11. MR 3590146, 10.1142/s0218127416502199
Reference: [25] Kesten, H., Spitzer, F.: Convergence in distribution for products of random matrices..Zeitschrift fur Wahrscheinlichkeitstheorie und Verwandte Gebiete 67 (1984), 363-386. MR 0761563, 10.1007/bf00532045
Reference: [26] Kristensen, D.: On stationarity and ergodicity of the bilinear model with applications to the GARCH models..J. Time Series Anal. 30 (2009), 1, 125-144. MR 2488638, 10.1111/j.1467-9892.2008.00603.x
Reference: [27] Ling, S., Peng, L., Zho, F.: Inference for special bilinear time series model..arXiv 2014. MR 3300205
Reference: [28] Liu, J.: Estimation for some bilinear time series..Stochastic Models 6 (1990), 649-665. MR 1080415, 10.1080/15326349908807167
Reference: [29] Ngatchou-W, J.: Estimation in a class of nonlinear heteroscedastic time series models..Elec. J. Stat. 2 (2008), 40-62. MR 2386085, 10.1214/07-ejs157
Reference: [30] Pan, J. Z., Li, G. D., Xie, Z.J.: Stationary solution and parametric estimation for bilinear model driven by $ARCH$ noises..Science in China (Series $A$) 45 (2002), 12, 1523-1537. MR 1955672
Reference: [31] Pham, D. T.: Bilinear Markovian representation of bilinear models..Stoch. Proc. Appl. 20 (1983), 295-306. MR 0808163, 10.1016/0304-4149(85)90216-9
Reference: [32] Rao, T. Subba, Gabr, M. M.: An introduction to bispectral analysis and bilinear time series models..Lecture Notes In Statistics 24 (1984), Springer Verlag, N.Y. MR 0757536, 10.1007/978-1-4684-6318-7
Reference: [33] Tjøstheim, D.: Estimation in nonlinear time series models..Stoch. Proc. Appl. 21 (1986), 251-273. MR 0833954, 10.1016/0304-4149(86)90099-2
Reference: [34] Wittwer, G. S.: Some remarks on bilinear time series models..Statistics 20 (1989), 521-529. MR 1047220, 10.1080/02331888908802201
.

Files

Files Size Format View
Kybernetika_54-2018-2_11.pdf 643.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo