Previous |  Up |  Next

Article

Title: The method of lines for hyperbolic stochastic functional partial differential equations (English)
Author: Wrzosek, Monika
Author: Ziemlańska, Maria
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 68
Issue: 2
Year: 2018
Pages: 323-339
Summary lang: English
.
Category: math
.
Summary: We apply an approximation by means of the method of lines for hyperbolic stochastic functional partial differential equations driven by one-dimensional Brownian motion. We study the stability with respect to small $L^2$-perturbations. (English)
Keyword: stochastic partial differential equation
Keyword: stability of the method of lines
Keyword: white noise
Keyword: Volterra stochastic equation
MSC: 35R60
MSC: 49M25
MSC: 60H15
idZBL: Zbl 06890376
idMR: MR3819177
DOI: 10.21136/CMJ.2018.0155-16
.
Date available: 2018-06-11T10:51:29Z
Last updated: 2020-07-06
Stable URL: http://hdl.handle.net/10338.dmlcz/147222
.
Reference: [1] Ashyralyev, A., Koksal, M. E., Agarwal, R. P.: A difference scheme for Cauchy problem for the hyperbolic equation with self-adjoint operator.Math. Comput. Modelling 52 (2010), 409-424. Zbl 1201.65150, MR 2645953, 10.1016/j.mcm.2010.03.012
Reference: [2] Ashyralyev, A., Yurtsever, H. A.: The stability of difference schemes of second-order of accuracy for hyperbolic-parabolic equations.Comput. Math. Appl. 52 (2006), 259-268. Zbl 1137.65054, MR 2263496, 10.1016/j.camwa.2006.08.017
Reference: [3] Bahuguna, D., Dabas, J., Shukla, R. K.: Method of lines to hyperbolic integro-differential equations in $\mathbb{R}^n$.Nonlinear Dyn. Syst. Theory 8 (2008), 317-328. Zbl 1206.45010, MR 2482448
Reference: [4] Bátkai, A., Csomós, P., Nickel, G.: Operator splittings and spatial approximations for evolution equations.J. Evol. Equ. 9 (2009), 613-636. Zbl 1239.47031, MR 2529739, 10.1007/s00028-009-0026-6
Reference: [5] Berger, M. A., Mizel, V. J.: Volterra equations with Ito integrals I.J. Integral Equations 2 (1980), 187-245. Zbl 0442.60064, MR 0581430
Reference: [6] Prato, G. Da, Zabczyk, J.: Stochastic Equations in Infinite Dimensions.Encyclopedia of Mathematics and Its Applications 44, Cambridge University Press, Cambridge (1992). Zbl 0761.60052, MR 1207136, 10.1017/CBO9780511666223
Reference: [7] Debbi, L., Dozzi, M.: On a space discretization scheme for the fractional stochastic heat equations.Avaible at https://arxiv.org/abs/1102.4689v1.
Reference: [8] Friedman, A.: Stochastic Differential Equations and Applications, Vol. 1.Probability and Mathematical Statistics 28, Academic Press, New York (1975). Zbl 0323.60056, MR 0494490
Reference: [9] Funaki, T.: Construction of a solution of random transport equation with boundary condition.J. Math. Soc. Japan 31 (1979), 719-744. Zbl 0405.60067, MR 0544688, 10.2969/jmsj/03140719
Reference: [10] Holden, H., Øksendal, B., Ubøe, J., Zhang, T.: Stochastic Partial Differential Equations. A Modeling, White Noise Functional Approach.Probability and Its Applications, Birkhäuser, Basel (1996). Zbl 0860.60045, MR 1408433, 10.1007/978-1-4684-9215-6
Reference: [11] Kamont, Z.: Hyperbolic Functional Differential Inequalities and Applications.Mathematics and Its Applications 486, Kluwer Academic Publishers, Dordrecht (1999). Zbl 0973.35188, MR 1784260, 10.1007/978-94-011-4635-7
Reference: [12] Kim, J. U.: On the Cauchy problem for the transport equation with random noise.J. Funct. Anal. 259 (2010), 3328-3359. Zbl 1203.35293, MR 2727647, 10.1016/j.jfa.2010.08.017
Reference: [13] Klebaner, F. C.: Introduction to Stochastic Calculus with Applications.Imperial College Press, London (2005). Zbl 1077.60001, MR 2160228, 10.1142/p386
Reference: [14] Kreiss, H.-O., Scherer, G.: Method of lines for hyperbolic differential equations.SIAM J. Numer. Anal. 29 (1992), 640-646. Zbl 0754.65078, MR 1163349, 10.1137/0729041
Reference: [15] Leszczyński, H.: Quasi-linearisation methods for a nonlinear heat equation with functional dependence.Georgian Math. J. 7 (2000), 97-116. Zbl 0964.35075, MR 1768048, 10.1515/GMJ.2000.97
Reference: [16] Leszczyński, H.: Comparison ODE theorems related to the method of lines.J. Appl. Anal. 17 (2011), 137-154. Zbl 1276.34065, MR 2805852, 10.1515/jaa.2011.009
Reference: [17] McDonald, S.: Finite difference approximation for linear stochastic partial differential equation with method of lines.MPRA Paper No. 3983. Avaible at http://mpra.ub.uni-muenchen.de/3983 (2006).
Reference: [19] Quer-Sardanyons, L., Sanz-Solé, M.: Space semi-discretisations for a stochastic wave equation.Potential Anal. 24 (2006), 303-332. Zbl 1119.60061, MR 2224753, 10.1007/s11118-005-9002-0
Reference: [20] Reddy, S. C., Trefethen, L. N.: Stability of the method of lines.Numer. Math. 62 (1992), 235-267. Zbl 0734.65077, MR 1165912, 10.1007/BF01396228
Reference: [21] Rößler, A., Seaïd, M., Zahri, M.: Method of lines for stochastic boundary-value problems with additive noise.Appl. Math. Comput. 199 (2008), 301-314. Zbl 1142.65007, MR 2415825, 10.1016/j.amc.2007.09.062
Reference: [22] Sharma, K. K., Singh, P.: Hyperbolic partial differential-difference equation in the mathematical modeling of neuronal firing and its numerical solution.Appl. Math. Comput. 201 (2008), 229-238. Zbl 1155.65374, MR 2432598, 10.1016/j.amc.2007.12.051
Reference: [23] Yoo, H.: Semi-discretization of stochastic partial differential equations on $\Bbb R^1$ by a finite-difference method.Math. Comput. 69 (2000), 653-666. Zbl 0942.65006, MR 1654030, 10.1090/S0025-5718-99-01150-3
.

Files

Files Size Format View
CzechMathJ_68-2018-2_3.pdf 328.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo