Previous |  Up |  Next

Article

Title: Order of the smallest counterexample to Gallai's conjecture (English)
Author: Chen, Fuyuan
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 68
Issue: 2
Year: 2018
Pages: 341-369
Summary lang: English
.
Category: math
.
Summary: In 1966, Gallai conjectured that all the longest paths of a connected graph have a common vertex. Zamfirescu conjectured that the smallest counterexample to Gallai's conjecture is a graph on 12 vertices. We prove that Gallai's conjecture is true for every connected graph $G$ with $\alpha '(G)\leq 5$, which implies that Zamfirescu's conjecture is true. (English)
Keyword: longest path
Keyword: matching number
MSC: 05C38
MSC: 05C70
MSC: 05C75
idZBL: Zbl 06890377
idMR: MR3819178
DOI: 10.21136/CMJ.2018.0422-16
.
Date available: 2018-06-11T10:52:01Z
Last updated: 2020-07-06
Stable URL: http://hdl.handle.net/10338.dmlcz/147223
.
Reference: [1] Balister, P., Györi, E., Lehel, J., Schelp, R.: Longest paths in circular arc graphs.Comb. Probab. Comput. 13 (2004), 311-317. Zbl 1051.05053, MR 2056401, 10.1017/S0963548304006145
Reference: [2] Brinkmann, G., Cleemput, N. Van: Private communication..
Reference: [3] Chen, F.: Nonempty intersection of longest paths in a graph with a small matching number.Czech. Math. J. 65 (2015), 545-553. Zbl 1363.05129, MR 3360444, 10.1007/s10587-015-0193-2
Reference: [4] Chen, G., Ehrenmüller, J., Fernandes, C. G., Heise, C. G., Shan, S., Yang, P., Yates, A. N.: Nonempty intersection of longest paths in series-parallel graphs.Discrete Math. 340 (2017), 287-304. Zbl 1351.05123, MR 3584816, 10.1016/j.disc.2016.07.023
Reference: [5] Rezende, S. F. de, Fernandes, C. G., Martin, D. M., Wakabayashi, Y.: Intersecting longest paths.Discrete Math. 313 (2013), 1401-1408. Zbl 1279.05041, MR 3061125, 10.1016/j.disc.2013.02.016
Reference: [6] Gallai, T.: Problem 4.Theory of Graphs. Proceedings of the colloquium held at Tihany, Hungary, September 1966 P. Erdös, G. Katona Academic Press, New York (1968). Zbl 0155.00201, MR 0232693
Reference: [7] Klavžar, S., Petkovšek, M.: Graphs with nonempty intersection of longest paths.Ars Comb. 29 (1990), 43-52. Zbl 0714.05037, MR 1046093
Reference: [8] Petersen, J.: Die Theorie der regulären graphs.Acta Math. 15 (1891), 193-220 German \99999JFM99999 23.0115.03. MR 1554815, 10.1007/BF02392606
Reference: [9] Walther, H.: Über die Nichtexistenz eines Knotenpunktes, durch den alle längsten Wege eines Graphen gehen.J. Comb. Theory 6 (1969), 1-6 German. Zbl 0184.27504, MR 0236054, 10.1016/S0021-9800(69)80098-0
Reference: [10] Walther, H., Voss, H. J.: Über Kreise in Graphen.VEB Deutscher Verlag der Wissenschaften, Berlin (1974), German. Zbl 0288.05101, MR 0539852
Reference: [11] Zamfirescu, T. I.: L'histoire et l'etat présent des bornes connues pour $P_k^j$, $C_k^j$, $\bar{P}_k^j$ et $\bar{C}_k^j$.Cah. Cent. Étud. Rech. Opér. 17 (1975), 427-439 French. Zbl 0313.05117, MR 0401544
Reference: [12] Zamfirescu, T. I.: On longest paths and circuits in graphs.Math. Scand. 38 (1976), 211-239. Zbl 0337.05127, MR 0429645, 10.7146/math.scand.a-11630
.

Files

Files Size Format View
CzechMathJ_68-2018-2_4.pdf 405.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo