[3] Castillo J. M. F., Sanchez F.: 
Dunford-Pettis like properties of continuous vector function spaces. Rev. Mat. Univ. Complut. Madrid 6 (1993), no. 1, 43–59. 
MR 1245024[4] Diestel J.: 
A survey of results related to the Dunford-Pettis property. Proc. of Conf. on Integration, Topology, and Geometry in Linear Spaces, Univ. North Carolina, Chapel Hill, 1979, Contemp. Math. 2 Amer. Math. Soc., Providence, 1980, pp. 15–60. 
MR 0621850 | 
Zbl 0571.46013[5] Diestel J.: 
Sequences and Series in Banach Spaces. Graduate Texts in Mathematics, 92, Springer, New York, 1984. 
MR 0737004[6] Diestel J., Jarchow H., Tonge A.: 
Absolutely Summing Operators. Cambridge Studies in Advanced Mathematics, 43, Cambridge University Press, Cambridge, 1995. 
MR 1342297 | 
Zbl 1139.47021[7] Diestel J., Uhl J. J. Jr.: 
Vector Measures. Mathematical Surveys, 15, American Mathematical Society, Providence, 1977. 
MR 0453964 | 
Zbl 0521.46035[10] Emmanuele G.: 
A remark on the containment of $c_{0}$ in spaces of compact operators. Math. Proc. Cambridge Philos. Soc. 111 (1992), no. 2, 331–335. 
DOI 10.1017/S0305004100075435 | 
MR 1142753[12] Feder M.: 
On subspaces of spaces with an unconditional basis and spaces of operators. Illinois J. Math. 24 (1980), no. 2, 196–205. 
MR 0575060[14] Ghenciu I.: 
The $p$-Gelfand Phillips property in spaces of operators and Dunford-Pettis like sets. available at arXiv:1803.00351v1 [math.FA] (2018), 16 pages. 
MR 2283818[15] Ghenciu I., Lewis P.: 
The Dunford-Pettis property, the Gelfand-Phillips property, and $L$-sets. Colloq. Math. 106 (2006), no. 2, 311–324. 
DOI 10.4064/cm106-2-11 | 
MR 2283818[17] John K.: 
On the uncomplemented subspace $ K(X,Y)$. Czechoslovak Math. J. 42(117) (1992), no. 1, 167–173. 
MR 1152178[21] Pełczyński A.: 
Banach spaces on which every unconditionally converging operator is weakly compact. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 10 (1962), 641–648. 
MR 0149295 | 
Zbl 0107.32504[22] Salimi M., Moshtaghiun S. M.: 
The Gelfand-Phillips property in closed subspaces of some operator spaces. Banach J. Math. Anal. 5 (2011), no. 2, 84–92. 
DOI 10.15352/bjma/1313363004 | 
MR 2792501