[1] Albiac F., Kalton N. J.: 
Topics in Banach Space Theory. Graduate Texts in Mathematics, 233, Springer, Cham, 2016. 
MR 3526021 | 
Zbl 1094.46002[2] Fabián M., Halaba P., Hájek P., Montesinos Santalucía V., Pelant J., Zízler V.: 
Functional Analysis and Infinite-Dimensional Geometry. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 8, Springer, New York, 2001. 
MR 1831176[3] Fraïssé R.: 
Sur quelques classifications des systèmes de relations. Publ. Sci. Univ. Alger. Sér. A. 1 (1954), 35–182 (French). 
MR 0069236[4] Garbulińska-Wegrzyn J.: 
Isometric uniqueness of a complementably universal Banach space for Schauder decompositions. Banach J. Math. Anal. 8 (2014), no. 1, 211–220. 
DOI 10.15352/bjma/1381782097 | 
MR 3161692[5] Gurariĭ V. I.: 
Spaces of universal placement, isotropic spaces and a problem of Mazur on rotations of Banach spaces. Sibirsk. Mat. Zh. 7 (1966), 1002–1013 (Russian). 
MR 0200697[12] Pełczyński A.: 
Any separable Banach space with the bounded approximation property is a complemented subspace of a Banach space with a basis. Studia Math. 40 (1971), 239–243. 
DOI 10.4064/sm-40-3-239-243 | 
MR 0308753[13] Pełczyński A., Wojtaszczyk P.: 
Banach spaces with finite-dimensional expansions of identity and universal bases of finite-dimensional subspaces. Studia Math. 40 (1971), 91–108. 
DOI 10.4064/sm-40-1-91-108 | 
MR 0313765[14] Schechtman G.: 
On Pełczyński's paper “Universal bases” (Studia Math. 32 (1969), 247–268). Israel J. Math. 22 (1975), no. 3–4, 181–184. 
MR 0390730