Previous |  Up |  Next

Article

Title: On interpolation error on degenerating prismatic elements (English)
Author: Khademi, Ali
Author: Korotov, Sergey
Author: Vatne, Jon Eivind
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 63
Issue: 3
Year: 2018
Pages: 237-257
Summary lang: English
.
Category: math
.
Summary: We propose an analogue of the maximum angle condition (commonly used in finite element analysis for triangular and tetrahedral meshes) for the case of prismatic elements. Under this condition, prisms in the meshes may degenerate in certain ways, violating the so-called inscribed ball condition presented by P. G. Ciarlet (1978), but the interpolation error remains of the order $O(h)$ in the $H^{1}$-norm for sufficiently smooth functions. (English)
Keyword: prismatic finite element
Keyword: interpolation error
Keyword: semiregular family of prismatic partitions
MSC: 65N12
MSC: 65N15
MSC: 65N30
MSC: 65N50
idZBL: Zbl 06945731
idMR: MR3833659
DOI: 10.21136/AM.2018.0357-17
.
Date available: 2018-07-16T08:47:29Z
Last updated: 2020-07-06
Stable URL: http://hdl.handle.net/10338.dmlcz/147309
.
Reference: [1] Apel, T.: Anisotropic Finite Elements: Local Estimates and Applications.Advances in Numerical Mathematics, Teubner, Leipzig; Technische Univ., Chemnitz (1999). Zbl 0934.65121, MR 1716824
Reference: [2] Apel, T., Dobrowolski, M.: Anisotropic interpolation with applications to the finite element method.Computing 47 (1992), 277-293. Zbl 0746.65077, MR 1155498, 10.1007/BF02320197
Reference: [3] Atkinson, K. E.: An Introduction to Numerical Analysis.John Wiley & Sons, New York (1978). Zbl 0402.65001, MR 0504339
Reference: [4] Babuška, I., Aziz, A. K.: On the angle condition in the finite element method.SIAM J. Numer. Anal. 13 (1976), 214-226. Zbl 0324.65046, MR 0455462, 10.1137/0713021
Reference: [5] Barnhill, R. E., Gregory, J. A.: Sard kernel theorems on triangular domains with application to finite element error bounds.Numer. Math. 25 (1976), 215-229. Zbl 0304.65076, MR 0458000, 10.1007/BF01399411
Reference: [6] Brandts, J., Korotov, S., Křížek, M.: On the equivalence of regularity criteria for triangular and tetrahedral finite element partitions.Comput. Math. Appl. 55 (2008), 2227-2233. Zbl 1142.65443, MR 2413688, 10.1016/j.camwa.2007.11.010
Reference: [7] Brandts, J., Korotov, S., Křížek, M.: On the equivalence of ball conditions for simplicial finite elements in ${\mathbb R}^d$.Appl. Math. Lett. 22 (2009), 1210-1212. Zbl 1173.52301, MR 2532540, 10.1016/j.aml.2009.01.031
Reference: [8] Brandts, J., Korotov, S., Křížek, M.: Generalization of the Zlámal condition for simplicial finite elements in $\Bbb R^d$.Appl. Math., Praha 56 (2011), 417-424. Zbl 1240.65327, MR 2833170, 10.1007/s10492-011-0024-1
Reference: [9] Ciarlet, P. G.: The Finite Element Method for Elliptic Problems.Studies in Mathematics and Its Applications 4, North-Holland Publishing, Amsterdam (1978). Zbl 0383.65058, MR 0520174
Reference: [10] Edelsbrunner, H.: Triangulations and meshes in computational geometry.Acta Numerica 9 (2000), 133-213. Zbl 1004.65024, MR 1883628, 10.1017/s0962492900001331
Reference: [11] Hannukainen, A., Korotov, S., Křížek, M.: The maximum angle condition is not necessary for convergence of the finite element method.Numer. Math. 120 (2012), 79-88. Zbl 1255.65196, MR 2885598, 10.1007/s00211-011-0403-2
Reference: [12] Hannukainen, A., Korotov, S., Křížek, M.: On Synge-type angle condition for $d$-simplices.Appl. Math., Praha 62 (2017), 1-13. Zbl 06738478, MR 3615475, 10.21136/AM.2017.0132-16
Reference: [13] Hannukainen, A., Korotov, S., Vejchodský, T.: Discrete maximum principle for FE solutions of the diffusion-reaction problem on prismatic meshes.J. Comput. Appl. Math. 226 (2009), 275-287. Zbl 1170.65093, MR 2501643, 10.1016/j.cam.2008.08.029
Reference: [14] Jamet, P.: Estimations d'erreur pour des éléments finis droits presque dégénérés.Rev. Franc. Automat. Inform. Rech. Operat. 10 French (1976), 43-60. Zbl 0346.65052, MR 0455282, 10.1051/m2an/197610r100431
Reference: [15] Kobayashi, K., Tsuchiya, T.: A priori error estimates for Lagrange interpolation on triangles.Appl. Math., Praha 60 (2015), 485-499. Zbl 1363.65015, MR 3396477, 10.1007/s10492-015-0108-4
Reference: [16] Kobayashi, K., Tsuchiya, T.: On the circumradius condition for piecewise linear triangular elements.Japan J. Ind. Appl. Math. 32 (2015), 65-76. Zbl 1328.65052, MR 3318902, 10.1007/s13160-014-0161-5
Reference: [17] Kobayashi, K., Tsuchiya, T.: Extending Babuška-Aziz's theorem to higher-order Lagrange interpolation.Appl. Math., Praha 61 (2016), 121-133. Zbl 06562150, MR 3470770, 10.1007/s10492-016-0125-y
Reference: [18] Korotov, S., Plaza, Á., Suárez, J. P.: Longest-edge $n$-section algorithms: properties and open problems.J. Comput. Appl. Math. 293 (2016), 139-146. Zbl 1329.65292, MR 3394208, 10.1016/j.cam.2015.03.046
Reference: [19] Křížek, M.: On semiregular families of triangulations and linear interpolation.Appl. Math., Praha 36 (1991), 223-232. Zbl 0728.41003, MR 1109126
Reference: [20] Křížek, M.: On the maximum angle condition for linear tetrahedral elements.SIAM J. Numer. Anal. 29 (1992), 513-520. Zbl 0755.41003, MR 1154279, 10.1137/0729031
Reference: [21] Křížek, M., Neittaanmäki, P.: Mathematical and Numerical Modelling in Electrical Engineering Theory and Application.Kluwer Academic Publishers, Dordrecht (1996). Zbl 0859.65128, MR 1431889, 10.1007/978-94-015-8672-6
Reference: [22] Křížek, M., Preiningerová, V.: Calculation of the 3d temperature field of synchronous and of induction machines by the finite element method.Elektrotechn. obzor 80 (1991), 78-84 Czech.
Reference: [23] Kučera, V.: A note on necessary and sufficient conditions for convergence of the finite element method.Proc. Int. Conf. Applications of Mathematics, Praha Czech Academy of Sciences, Institute of Mathematics, Praha J. Brandts et al. (2015), 132-139. Zbl 1363.65189, MR 3700195
Reference: [24] Kučera, V.: On necessary and sufficient conditions for finite element convergence.Available at https://arxiv.org/abs/1601.02942 (2016), 42 pages. MR 3700195
Reference: [25] Kučera, V.: Several notes on the circumradius condition.Appl. Math., Praha 61 (2016), 287-298. Zbl 06587853, MR 3502112, 10.1007/s10492-016-0132-z
Reference: [26] Mao, S., Shi, Z.: Error estimates of triangular finite elements under a weak angle condition.J. Comput. Appl. Math. 230 (2009), 329-331. Zbl 1168.65063, MR 2532314, 10.1016/j.cam.2008.11.008
Reference: [27] Oswald, P.: Divergence of FEM: Babuška-Aziz triangulations revisited.Appl. Math., Praha 60 (2015), 473-484. Zbl 1363.65202, MR 3396476, 10.1007/s10492-015-0107-5
Reference: [28] Synge, J. L.: The Hypercircle in Mathematical Physics. A Method for the Approximate Solution of Boundary Value Problems.Cambridge University Press, New York (1957). Zbl 0079.13802, MR 0097605
Reference: [29] Ženíšek, A.: Convergence of the finite element method for boundary value problems of a system of elliptic equations.Apl. Mat. 14 Czech (1969), 355-376. Zbl 0188.22604, MR 0245978
Reference: [30] Zlámal, M.: On the finite element method.Numer. Math. 12 (1968), 394-409. Zbl 0176.16001, MR 0243753, 10.1007/BF02161362
.

Files

Files Size Format View
AplMat_63-2018-3_3.pdf 358.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo