Previous |  Up |  Next

Article

Title: Energy gaps for exponential Yang-Mills fields (English)
Author: Zhou, Zhen-Rong
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 54
Issue: 3
Year: 2018
Pages: 127-134
Summary lang: English
.
Category: math
.
Summary: In this paper, some inequalities of Simons type for exponential Yang-Mills fields over compact Riemannian manifolds are established, and the energy gaps are obtained. (English)
Keyword: exponential Yang-Mills field
Keyword: energy gap
MSC: 58E15
MSC: 58E20
idZBL: Zbl 06940793
idMR: MR3847320
DOI: 10.5817/AM2018-3-127
.
Date available: 2018-08-07T13:32:23Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147347
.
Reference: [1] Beckner, W.: Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality.Ann. of Math. (2) 138 (1993), 213–242. MR 1230930
Reference: [2] Bourguignon, J.P., Lawson, H.B.: Stability and isolation phenomena for Yang-Mills fields.Comm. Math. Phys. 79 (2) (1981). MR 0612248, 10.1007/BF01942061
Reference: [3] Bourguignon, J.P., Lawson, H.B., Simons, J.: Stability and gap phenomena for Yang-Mills fields.Proc. Natl. Acad. Sci. USA 76 (1979). Zbl 0408.53023, MR 0526178, 10.1073/pnas.76.4.1550
Reference: [4] Chen, Q., Zhou, Z.R.: On gap properties and instabilities of p-Yang-Mills fields.Canad. J. Math. 59 (6) (2007), 1245–1259. Zbl 1131.58010, MR 2363065, 10.4153/CJM-2007-053-x
Reference: [5] Dodziuk, J., Min-Oo, : An $L_{2}$-isolation theorem for Yang-Mills fields over complete manifolds.Compositio Math 47 (2) (1982), 165–169. MR 0677018
Reference: [6] Donaldson, S.K., Kronheimer, P.B.: The geometry of four-manifolds.Proceedings of Oxford Mathematical Monographs, The Clarendon Press, Oxford University Pres, Oxford Science Publications, New York, 1990. MR 1079726
Reference: [7] Feehan, P.M.N.: Energy gap for Yang-Mills connections, I: Four-dimensional closed Riemannian manifold.Adv. Math. 296 (2016), 55–84. MR 3490762, 10.1016/j.aim.2016.03.034
Reference: [8] Feehan, P.M.N.: Energy gap for Yang-Mills connections, II: Arbitrary closed Riemannian manifolds.Adv. Math. 312 (2017), 547–587. MR 3635819, 10.1016/j.aim.2017.03.023
Reference: [9] Gerhardt, C.: An energy gap for Yang-Mills connections.Comm. Math. Phys. 298 (2010), 515–522. MR 2669447, 10.1007/s00220-010-1073-0
Reference: [10] Hebey, E.: Sobolev spaces on Riemannian manifolds.Lecture Notes in Math., vol. 1635, Springer-Verlag Berlin Heidelberg, 1996. MR 1481970
Reference: [11] Min-Oo, : An $L_{2}$-isolation theorem for Yang-Mills fields.Compositio Math. 47 (2) (1982), 153–163. MR 0677017
Reference: [12] Shen, C.L.: The gap phenomena of Yang-Mills fields over the complete manifolds.Math. Z. 180 (1982), 69–77. MR 0656222, 10.1007/BF01214999
Reference: [13] Zhou, Z.R.: Inequalities of Simons type and gaps for Yang-Mills fields.Ann. Global Anal. Geom. 48 (3) (2015), 223–232. MR 3396465, 10.1007/s10455-015-9467-z
Reference: [14] Zhou, Z.R.: Energy gaps for Yang-Mills fields.J. Math. Anal. Appl. 439 (2016), 514–522. MR 3475935, 10.1016/j.jmaa.2016.02.058
Reference: [15] Zhou, Z.R., Chen Qun, : Global pinching lemmas and their applications to geometry of submanifolds, harmonic maps and Yang-Mills fields.Adv. Math. 32 (1) (2003), 319–326. MR 2000989
.

Files

Files Size Format View
ArchMathRetro_054-2018-3_1.pdf 503.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo