Previous |  Up |  Next

Article

Title: The infinitesimal counterpart of tangent presymplectic groupoids of higher order (English)
Author: Kouotchop Wamba, P.M.
Author: MBA, A.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 54
Issue: 3
Year: 2018
Pages: 135-151
Summary lang: English
.
Category: math
.
Summary: Let $\left(G, \omega \right)$ be a presymplectic groupoid. In this paper we characterize the infinitesimal counter part of the tangent presymplectic groupoid of higher order, $(T^{r}G, \omega ^{\left(c\right)})$ where $T^{r}G$ is the tangent groupoid of higher order and $\omega ^{\left(c\right)}$ is the complete lift of higher order of presymplectic form $\omega $. (English)
Keyword: IM-2 forms
Keyword: complete lifts of vector fields and differential forms
Keyword: twisted-Dirac structures
Keyword: tangent functor of higher order
Keyword: natural transformations
MSC: 53C15
MSC: 53C75
MSC: 53D05
idZBL: Zbl 06940794
idMR: MR3847321
DOI: 10.5817/AM2018-3-135
.
Date available: 2018-08-07T13:33:44Z
Last updated: 2023-08-27
Stable URL: http://hdl.handle.net/10338.dmlcz/147349
.
Reference: [1] Bursztyn, H., A., Cabrera: Multiplicative forms at the infinitesimal level.Math. Ann. 353 (2012), 663–705. MR 2923945, 10.1007/s00208-011-0697-5
Reference: [2] Bursztyn, H., Crainic, M., Weinstein, A., Zhu, C.: Integration of twisted Dirac bracket.Duke Math. J. 123 (2004), 549–607. MR 2068969, 10.1215/S0012-7094-04-12335-8
Reference: [3] Cantrijn, F., Crampin, M., Sarlet, W., Saunders, D.: The canonical isomorphism between $T^{k}T^{\ast }$ and $T^{\ast }T^{k}$.C. R. Acad. Sci. Paris Sér. I Math. 309 (1989), 1509–1514. MR 1033091
Reference: [4] Coste, A., Dazord, P., Weinstein, A.: Groupoïdes symplectiques.Publ. Dep. Math. Nouvelle Ser. A2, Univ. Claude-Bernard, Lyon 2 (1987), 1–62. MR 0996653
Reference: [5] Courant, T.J.: Dirac manifolds.Trans. Amer. Math. Soc. 319 (1990), 631–661. MR 0998124, 10.1090/S0002-9947-1990-0998124-1
Reference: [6] del Hoyo, M., Ortiz, C.: Morita equivalences of vector bundles.arXiv: 1612. 09289v2 [math. DG], 4 Apr. 2017, 2017. MR 3679884
Reference: [7] Gancarzewicz, J., Mikulski, W., Pogoda, Z.: Lifts of some tensor fields and connections to product preserving functors.Nagoya Math. J. 135 (1994), 1–41. Zbl 0813.53010, MR 1295815, 10.1017/S0027763000004931
Reference: [8] Kolář, I., Michor, P., Slovák, J.: Natural operations in differential geometry.Springer-Verlag, 1993. Zbl 0782.53013, MR 1202431
Reference: [9] Kouotchop Wamba, P.M., Ntyam, A.: Tangent lifts of higher order of multiplicative Dirac structures.Arch. Math. (Brno) 49 (2013), 87–104. MR 3118866, 10.5817/AM2013-2-87
Reference: [10] Kouotchop Wamba, P.M., Ntyam, A., Wouafo Kamga, J.: Some properties of tangent Dirac structures of higher order.Arch. Math. (Brno) 48 (2012), 17–22. MR 2813543
Reference: [11] Kouotchop Wamba, P.M., Ntyam, A., Wouafo Kamga, J.: Tangent lift of higher order of multivector fields and applications.J. Math. Sci. Adv. Appl. 15 (2012), 89–112. MR 3058846
Reference: [12] Mackenzie, K.: On symplectic double groupoids and the duality of Poisson groupoids.Internat. J. Math. 10 (1999), 435–456. MR 1697617, 10.1142/S0129167X99000185
Reference: [13] Mackenzie, K.: Theory of Lie groupoids and Lie algebroids.London Math. Soc. Lecture Note Ser. 213 (2005). MR 2157566
Reference: [14] Morimoto, A.: Lifting of some type of tensors fields and connections to tangent bundles of $p^{r}$-velocities.Nagoya Math. J. 40 (1970), 13–31. MR 0279720, 10.1017/S0027763000013830
Reference: [15] Ortiz, C.: B-field transformations of Poisson groupoids.Proceedings of the Second Latin Congress on Symmetries in Geometry and Physics, Matemática Contemporânea, vol. 41, 2012, pp. 113–148. MR 3087576
Reference: [16] Vaisman, I.: Lectures on the geometry of Poisson manifolds.vol. 118, Progress in Math., Birkhäuser, 1994. Zbl 0810.53019, MR 1269545
Reference: [17] Wouafo Kamga, J.: On the tangential linearization of Hamiltonian systems.International Centre for Theoretical Physics, Trieste, 1997.
.

Files

Files Size Format View
ArchMathRetro_054-2018-3_2.pdf 507.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo