Previous |  Up |  Next

Article

Title: Best proximity point for proximal Berinde nonexpansive mappings on starshaped sets (English)
Author: Bunlue, Nuttawut
Author: Suantai, Suthep
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 54
Issue: 3
Year: 2018
Pages: 165-176
Summary lang: English
.
Category: math
.
Summary: In this paper, we introduce the new concept of proximal mapping, namely proximal weak contractions and proximal Berinde nonexpansive mappings. We prove the existence of best proximity points for proximal weak contractions in metric spaces, and for proximal Berinde nonexpansive mappings on starshape sets in Banach spaces. Examples supporting our main results are also given. Our main results extend and generalize some of well-known best proximity point theorems of proximal nonexpansive mappings in the literatures. (English)
Keyword: best proximity point
Keyword: proximal weak contraction mapping
Keyword: proximal Berinde nonexpansive mapping
Keyword: starshaped set
MSC: 47H09
MSC: 47H10
idZBL: Zbl 06940796
idMR: MR3847323
DOI: 10.5817/AM2018-3-165
.
Date available: 2018-08-07T13:37:05Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147351
.
Reference: [1] Basha, S.S.: Best proximity points: optimal solutions.J. Optim. Theory Appl. 151 (1) (2011), 210–216. MR 2836473, 10.1007/s10957-011-9869-4
Reference: [2] Basha, S.S., Veeramani, P.: Best proximity pair theorems for multifunctions with open fibres.J. Approx. Theory 103 (1) (2000), 119–129. MR 1744381, 10.1006/jath.1999.3415
Reference: [3] Berinde, V.: Approximating fixed points of weak contractions using the Picard iteration.Nonlinear Anal. Forum 9 (2004), 43–53. MR 2111366
Reference: [4] Chen, J., Xiao, S., Wang, H., Deng, S.: Best proximity point for the proximal nonexpansive mapping on the starshaped sets.Fixed Point Theory and Applications 19 (2015). MR 3306103
Reference: [5] Eldred, A.A., Veeramani, P.: Existence and convergence of best proximity points.J. Math. Anal. Appl. 323 (2) (2006), 1001–1006. MR 2260159, 10.1016/j.jmaa.2005.10.081
Reference: [6] Fan, K.: A generalization of Tychoff’s fixed point theorem.Math. Ann. 142 (1961), 305–310. MR 0131268, 10.1007/BF01353421
Reference: [7] Gabeleh, M.: Proximal weakly contractive and proximal nonexpansive non-self-mappings in metric and Banach spaces.J. Optim. Theory Appl. 158 (2) (2013), 615–625. MR 3084393, 10.1007/s10957-012-0246-8
Reference: [8] Gabeleh, M.: Global optimal solutions of non-self mappings.UPB Sci. Bull., Series A: App. Math. Phys. 75 (2014), 67–74. MR 3130208
Reference: [9] Gabeleh, M.: Best proximity point theorems via proximal non-self mappings.J. Optim. Theory Appl. 164 (2015), 565–576. MR 3297978, 10.1007/s10957-014-0585-8
Reference: [10] Kim, W.K.: Existence of equilibrium pair in best proximity settings.Appl. Math. Sci. 9 (13) (2015), 629–636.
Reference: [11] Kim, W.K., Kum, S., Lee, K.H.: On general best proximity pairs and equilibrium pairs in free abstract economies.Nonlinear Anal. 68 (2008), 2216–2227. MR 2398644
Reference: [12] Kim, W.K., Lee, K.H.: Existence of best proximity pairs and equilibrium pairs.J. Math. Anal. Appl. 316 (2006), 433–446. MR 2206681, 10.1016/j.jmaa.2005.04.053
Reference: [13] Kirk, W.A., Reich, S., Veeramani, P.: Proximinal retracts and best proximity pair theorems.Numer. Funct. Anal. Optim. 24 (7–8) (2003), 851–862. MR 2011594, 10.1081/NFA-120026380
Reference: [14] Kosuru, G.S.R., Veeramani, P.: A note on existence and convergence of best proximity points for pointwise cyclic contractions.Numer. Funct. Anal. Optim. 32 (7) (2011), 821–830. MR 2801379, 10.1080/01630563.2011.578900
Reference: [15] Prolla, J.B.: Fixed-point theorems for set-valued mappings and existence of best approximants.Numer. Funct. Anal. Optim. 5 (4) (1983), 449–455. MR 0703107, 10.1080/01630568308816149
Reference: [16] Raj, V.S.: A best proximity point theorem for weakly contractive non-self mappings.Nonlinear Anal. TMA 74 (14) (2011), 4804–4808. MR 2810719
Reference: [17] Reich, S.: Approximate selections, best approximations, fixed points, and invariant sets.J. Math. Anal. Appl. 62 (1) (1978), 104–113. MR 0514991, 10.1016/0022-247X(78)90222-6
Reference: [18] Sehgal, V.M., Singh, S.P.: A generalization to multifunctions of Fan’s best approximation theorem.Proc. Amer. Math. Soc. 102 (3) (1988), 534–537. MR 0928974
Reference: [19] Sehgal, V.M., Singh, S.P.: A theorem on best approximations.Numer. Funct. Anal. Optim. 10 (1–2) (1989), 181–184. MR 0978810, 10.1080/01630568908816298
Reference: [20] Suzuki, T.: A generalized Banach contraction principle which characterizes metric completeness.Proc. Amer. Math. Soc. 136 (2008), 1861–1869. MR 2373618, 10.1090/S0002-9939-07-09055-7
Reference: [21] Veeramani, P., Kirk, W.A., Eldred, A.A.: Proximal normal structure and relatively nonexpansive mappings.Stud. Math. 171 (3) (2005), 283–293. MR 2188054, 10.4064/sm171-3-5
Reference: [22] Vetrivel, V., Veeramani, P., Bhattacharyya, P.: Some extensions of Fan’s best approximation theorem.Numer. Funct. Anal. Optim. 13 (3–4) (1992), 397–402. MR 1179367, 10.1080/01630569208816486
.

Files

Files Size Format View
ArchMathRetro_054-2018-3_4.pdf 475.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo