Previous |  Up |  Next

Article

Title: On the Diophantine equation $\sum _{j=1}^kjF_j^p=F_n^q$ (English)
Author: Soydan, Gökhan
Author: Németh, László
Author: Szalay, László
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 54
Issue: 3
Year: 2018
Pages: 177-188
Summary lang: English
.
Category: math
.
Summary: Let $F_n$ denote the $n^{th}$ term of the Fibonacci sequence. In this paper, we investigate the Diophantine equation $F_1^p+2F_2^p+\cdots +kF_{k}^p=F_{n}^q$ in the positive integers $k$ and $n$, where $p$ and $q$ are given positive integers. A complete solution is given if the exponents are included in the set $\lbrace 1,2\rbrace $. Based on the specific cases we could solve, and a computer search with $p,q,k\le 100$ we conjecture that beside the trivial solutions only $F_8=F_1+2F_2+3F_3+4F_4$, $F_4^2=F_1+2F_2+3F_3$, and $F_4^3=F_1^3+2F_2^3+3F_3^3$ satisfy the title equation. (English)
Keyword: Fibonacci sequence
Keyword: Diophantine equation
MSC: 11B39
MSC: 11D45
idZBL: Zbl 06940797
idMR: MR3847324
DOI: 10.5817/AM2018-3-177
.
Date available: 2018-08-07T13:38:18Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147352
.
Reference: [1] Alvarado, S.D., Dujella, A., Luca, F.: On a conjecture regarding balancing with powers of Fibonacci numbers.Integers 12 (2012), 1127–1158. MR 3011553, 10.1515/integers-2012-0032
Reference: [2] Andreescu, T., Andrica, D.: Quadratic Diophantine Equations.2015, 124–126. MR 3362224
Reference: [3] Behera, A., Liptai, K., Panda, G.K., Szalay, L: Balancing with Fibonacci powers.Fibonacci Quart. 49 (2011), 28–33. MR 2781575
Reference: [4] Chaves, A.P., Marques, D., Togbé, A.: On the sum of powers of terms of a linear recurrence sequence.Bull. Braz. Math. Soc. New Series 43 (2012), 397–406. MR 3024062, 10.1007/s00574-012-0018-y
Reference: [5] Koshy, T.: Fibonacci and Lucas Numbers with Applications.John Wiley and Sons, 2011. MR 1855020
Reference: [6] Luca, F., Oyono, R.: An exponential Diophantine equation related to powers of two consecutive Fibonacci numbers.Proc. Japan Acad. Ser. A 87 (2011), 45–50. MR 2803898
Reference: [7] Luca, F., Szalay, L.: Fibonacci diophantine triples.Glas. Mat. Ser. III 43 (63) (2008), 253–264. MR 2460699, 10.3336/gm.43.2.03
Reference: [8] Marques, D., Togbé, A.: On the sum of powers of two consecutive Fibonacci numbers.Proc. Japan Acad. Ser. A 86 (2010), 174–176. MR 2779831
Reference: [9] Panda, G.K.: Sequence balancing and cobalancing numbers.Fibonacci Quart. 45 (2007), 265–271. MR 2438198
Reference: [10] Pongsriiam, P.: Fibonacci and Lucas numbers associated with Brocard-Ramanujan equation.Commun. Korean Math. Soc. 91 (3) (2017), 511–522. MR 3682410
Reference: [11] Pongsriiam, P.: Fibonacci and Lucas numbers which are one away from their products.Fibonacci Quart. 55 (2017), 29–40. MR 3620575
Reference: [12] Soydan, G.: On the Diophantine equation $(x+1)^k+(x+2)^k+\dots +(lx)^k=y^n$.Publ. Math. Debrecen 91 (3–4) (2017), 369–382. MR 3744801
Reference: [13] Vorob’ev, N.N.: Fibonacci Numbers.Blaisdell Pub. Co. New York, 1961.
Reference: [14] Wulczyn, G.: Problem E2158.Amer. Math. Monthly 76 (1969), 1144–1146. MR 1535701, 10.2307/2317203
.

Files

Files Size Format View
ArchMathRetro_054-2018-3_5.pdf 566.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo