Title:
|
On the Diophantine equation $\sum _{j=1}^kjF_j^p=F_n^q$ (English) |
Author:
|
Soydan, Gökhan |
Author:
|
Németh, László |
Author:
|
Szalay, László |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
54 |
Issue:
|
3 |
Year:
|
2018 |
Pages:
|
177-188 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $F_n$ denote the $n^{th}$ term of the Fibonacci sequence. In this paper, we investigate the Diophantine equation $F_1^p+2F_2^p+\cdots +kF_{k}^p=F_{n}^q$ in the positive integers $k$ and $n$, where $p$ and $q$ are given positive integers. A complete solution is given if the exponents are included in the set $\lbrace 1,2\rbrace $. Based on the specific cases we could solve, and a computer search with $p,q,k\le 100$ we conjecture that beside the trivial solutions only $F_8=F_1+2F_2+3F_3+4F_4$, $F_4^2=F_1+2F_2+3F_3$, and $F_4^3=F_1^3+2F_2^3+3F_3^3$ satisfy the title equation. (English) |
Keyword:
|
Fibonacci sequence |
Keyword:
|
Diophantine equation |
MSC:
|
11B39 |
MSC:
|
11D45 |
idZBL:
|
Zbl 06940797 |
idMR:
|
MR3847324 |
DOI:
|
10.5817/AM2018-3-177 |
. |
Date available:
|
2018-08-07T13:38:18Z |
Last updated:
|
2020-01-05 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/147352 |
. |
Reference:
|
[1] Alvarado, S.D., Dujella, A., Luca, F.: On a conjecture regarding balancing with powers of Fibonacci numbers.Integers 12 (2012), 1127–1158. MR 3011553, 10.1515/integers-2012-0032 |
Reference:
|
[2] Andreescu, T., Andrica, D.: Quadratic Diophantine Equations.2015, 124–126. MR 3362224 |
Reference:
|
[3] Behera, A., Liptai, K., Panda, G.K., Szalay, L: Balancing with Fibonacci powers.Fibonacci Quart. 49 (2011), 28–33. MR 2781575 |
Reference:
|
[4] Chaves, A.P., Marques, D., Togbé, A.: On the sum of powers of terms of a linear recurrence sequence.Bull. Braz. Math. Soc. New Series 43 (2012), 397–406. MR 3024062, 10.1007/s00574-012-0018-y |
Reference:
|
[5] Koshy, T.: Fibonacci and Lucas Numbers with Applications.John Wiley and Sons, 2011. MR 1855020 |
Reference:
|
[6] Luca, F., Oyono, R.: An exponential Diophantine equation related to powers of two consecutive Fibonacci numbers.Proc. Japan Acad. Ser. A 87 (2011), 45–50. MR 2803898 |
Reference:
|
[7] Luca, F., Szalay, L.: Fibonacci diophantine triples.Glas. Mat. Ser. III 43 (63) (2008), 253–264. MR 2460699, 10.3336/gm.43.2.03 |
Reference:
|
[8] Marques, D., Togbé, A.: On the sum of powers of two consecutive Fibonacci numbers.Proc. Japan Acad. Ser. A 86 (2010), 174–176. MR 2779831 |
Reference:
|
[9] Panda, G.K.: Sequence balancing and cobalancing numbers.Fibonacci Quart. 45 (2007), 265–271. MR 2438198 |
Reference:
|
[10] Pongsriiam, P.: Fibonacci and Lucas numbers associated with Brocard-Ramanujan equation.Commun. Korean Math. Soc. 91 (3) (2017), 511–522. MR 3682410 |
Reference:
|
[11] Pongsriiam, P.: Fibonacci and Lucas numbers which are one away from their products.Fibonacci Quart. 55 (2017), 29–40. MR 3620575 |
Reference:
|
[12] Soydan, G.: On the Diophantine equation $(x+1)^k+(x+2)^k+\dots +(lx)^k=y^n$.Publ. Math. Debrecen 91 (3–4) (2017), 369–382. MR 3744801 |
Reference:
|
[13] Vorob’ev, N.N.: Fibonacci Numbers.Blaisdell Pub. Co. New York, 1961. |
Reference:
|
[14] Wulczyn, G.: Problem E2158.Amer. Math. Monthly 76 (1969), 1144–1146. MR 1535701, 10.2307/2317203 |
. |