Previous |  Up |  Next

Article

Keywords:
strict Mittag-Leffler condition; locally split morphism; Gorenstein projective module; Ding projective module
Summary:
In this paper, we prove that any pure submodule of a strict Mittag-Leffler module is a locally split submodule. As applications, we discuss some relations between locally split monomorphisms and locally split epimorphisms and give a partial answer to the open problem whether Gorenstein projective modules are Ding projective.
References:
[1] Hügel, L. Angeleri, Bazzoni, S., Herbera, D.: A solution to the Baer splitting problem. Trans. Am. Math. Soc. 360 (2008), 2409-2421. DOI 10.1090/S0002-9947-07-04255-9 | MR 2373319 | Zbl 1136.13005
[2] Hügel, L. Angeleri, Herbera, D.: Mittag-Leffler conditions on modules. Indiana Univ. Math. J. 57 (2008), 2459-2517. DOI 10.1512/iumj.2008.57.3325 | MR 2463975 | Zbl 1206.16002
[3] Azumaya, G.: Locally pure-projective modules. Azumaya Algebras, Actions, and Modules Proc. Conf., Bloomington 1990, Contemp. Math. 124, Am. Math. Soc., Providence (1992), 17-22. DOI 10.1090/conm/124 | MR 1144024 | Zbl 0743.16003
[4] Bazzoni, S., Herbera, D.: One dimensional tilting modules are of finite type. Algebr. Represent. Theory 11 (2008), 43-61. DOI 10.1007/s10468-007-9064-3 | MR 2369100 | Zbl 1187.16008
[5] Bazzoni, S., Šťovíček, J.: All tilting modules are of finite type. Proc. Am. Math. Soc. 135 (2007), 3771-3781. DOI 10.1090/S0002-9939-07-08911-3 | MR 2341926 | Zbl 1132.16008
[6] Bennis, D., Mahdou, N.: Strongly Gorenstein projective, injective, and flat modules. J. Pure Appl. Algebra 210 (2007), 437-445. DOI 10.1016/j.jpaa.2006.10.010 | MR 2320007 | Zbl 1118.13014
[7] Chase, S. U.: Direct products of modules. Trans. Am. Math. Soc. 97 (1960), 457-473. DOI 10.2307/1993382 | MR 0120260 | Zbl 0100.26602
[8] Ding, N., Li, Y., Mao, L.: Strongly Gorenstein flat modules. J. Aust. Math. Soc. 86 (2009), 323-338. DOI 10.1017/S1446788708000761 | MR 2529328 | Zbl 1200.16010
[9] Emmanouil, I.: On certain cohomological invariants of groups. Adv. Math. 225 (2010), 3446-3462. DOI 10.1016/j.aim.2010.06.007 | MR 2729012 | Zbl 1214.20050
[10] Emmanouil, I., Talelli, O.: On the flat length of injective modules. J. Lond. Math. Soc., II. Ser. 84 (2011), 408-432. DOI 10.1112/jlms/jdr014 | MR 2835337 | Zbl 1237.16004
[11] Enochs, E. E., Jenda, O. M. G.: Relative Homological Algebra. De Gruyter Expositions in Mathematics 30, Walter de Gruyter, Berlin (2000). DOI 10.1515/9783110803662 | MR 1753146 | Zbl 0952.13001
[12] Gillespie, J.: Model structures on modules over Ding-Chen rings. Homology Homotopy Appl. 12 (2010), 61-73. DOI 10.4310/HHA.2010.v12.n1.a6 | MR 2607410 | Zbl 1231.16005
[13] Grothendieck, A.: Techniques de construction et théorèmes d'existence en géométrie algébrique. III. Préschemas quotients. Sém. Bourbaki, Vol. 6, 1960-1961 Soc. Math. France, Paris (1995), French 99-118. MR 1611786 | Zbl 0235.14007
[14] Herbera, D., Trlifaj, J.: Almost free modules and Mittag-Leffler conditions. Adv. Math. 229 (2012), 3436-3467. DOI 10.1016/j.aim.2012.02.013 | MR 2900444 | Zbl 1279.16001
[15] Raynaud, M., Gruson, L.: Critères de platitude et de projectivité. Techniques de ``platification'' d'un module. Invent. Math. 13 (1971), 1-89 French. DOI 10.1007/BF01390094 | MR 0308104 | Zbl 0227.14010
[16] Zimmermann, W.: On locally pure-injective modules. J. Pure Appl. Algebra 166 (2002), 337-357. DOI 10.1016/S0022-4049(01)00011-1 | MR 1870625 | Zbl 0993.16002
Partner of
EuDML logo