Previous |  Up |  Next

Article

Title: Solving a class of Hamilton-Jacobi-Bellman equations using pseudospectral methods (English)
Author: Mehrali-Varjani, Mohsen
Author: Shamsi, Mostafa
Author: Malek, Alaeddin
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 54
Issue: 4
Year: 2018
Pages: 629-647
Summary lang: English
.
Category: math
.
Summary: This paper presents a numerical approach to solve the Hamilton-Jacobi-Bellman (HJB) problem which appears in feedback solution of the optimal control problems. In this method, first, by using Chebyshev pseudospectral spatial discretization, the HJB problem is converted to a system of ordinary differential equations with terminal conditions. Second, the time-marching Runge-Kutta method is used to solve the corresponding system of differential equations. Then, an approximate solution for the HJB problem is computed. In addition, to get more efficient and accurate method, the domain decomposition strategy is proposed with the pseudospectral spatial discretization. Five numerical examples are presented to demonstrate the efficiency and accuracy of the proposed hybrid method. (English)
Keyword: nonlinear optimal control
Keyword: pseudospectral method
Keyword: Hamilton–Jacobi–Bellman equation
MSC: 35F21
MSC: 49J20
MSC: 65M70
idZBL: Zbl 06987026
idMR: MR3863248
DOI: 10.14736/kyb-2018-4-0629
.
Date available: 2018-10-30T14:33:46Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147415
.
Reference: [1] Baltensperger, R., Trummer, M. R.: Spectral differencing with a twist..SIAM J. Sci. Comput. 24 (2003), 1465-1487. MR 1976305, 10.1137/s1064827501388182
Reference: [2] Beard, R., Saridis, G., Wen, J.: Galerkin approximations of the generalized Hamilton-Jacobi-Bellman equation..Automatica 33 (1997), 2159-2177. MR 1604089, 10.1016/s0005-1098(97)00128-3
Reference: [3] Ben-Asher, J. Z.: Optimal Control Theory with Aerospace Applications..American Institute of Aeronautics and Astronautics, Reston 2010. 10.2514/4.867347
Reference: [4] Boyd, J. P.: Chebyshev and Fourier Spectral Methods. Second revised edition..Dover Publications, New York 2001. MR 1874071
Reference: [5] Boyd, J. P., Petschek, R.: The relationships between Chebyshev, Legendre and Jacobi polynomials: the generic superiority of Chebyshev polynomials and three important exceptions..J. Scientific Comput. 59 (2014), 1-27. MR 3167725, 10.1007/s10915-013-9751-7
Reference: [6] Canuto, C., Hussaini, M. Y., Quarteroni, A., Zang, T. A.: Spectral Methods in Fluid Dynamics..Springer-Verlag, Berlin 1987. MR 2340254, 10.1007/978-3-642-84108-8
Reference: [7] Canuto, C., Hussaini, M. Y., Quarteroni, A., Zang, T. A.: Spectral Methods: Fundamentals in Single Domains..Springer-Verlag, Berlin 2006. MR 2223552
Reference: [8] Cristiani, E., Martinon, P.: Initialization of the shooting method via the Hamilton-Jacobi-Bellman approach..J. Optim. Theory Appl. 146 (2010), 321-346. MR 2679665, 10.1007/s10957-010-9649-6
Reference: [9] Dai, R., Jr, J. Cochran: Wavelet collocation method for optimal control problems.J. Optim. Theory Appl. 143 (2009), 265–278. MR 2545952, 10.1007/s10957-009-9565-9
Reference: [10] Elnagar, G., Kazemi, M. A., Razzaghi, M.: The pseudospectral Legendre method for discretizing optimal control problems..IEEE Trans. Automat. Control 40 (1995), 1793-1796. MR 1354521, 10.1109/9.467672
Reference: [11] Fahroo, F., Ross, I. M.: Direct trajectory optimization by a Chebyshev pseudospectral method..J. Guid. Control Dynam. 25 (2002), 160-166. 10.2514/2.4862
Reference: [12] Foroozandeh, Z., Shamsi, M., Azhmyakov, V., Shafiee, M.: A modified pseudospectral method for solving trajectory optimization problems with singular arc..Math. Methods Appl. Sci. 40 (2017), 1783-1793. MR 3622433, 10.1002/mma.4097
Reference: [13] Funaro, D.: Polynomial Approximation of Differential Equations..Springer-Verlag, Berlin 1992. MR 1176949, 10.1007/978-3-540-46783-0
Reference: [14] Hanert, E., Piret, C.: A Chebyshev pseudospectral method to solve the space-time tempered fractional diffusion equation..SIAM J. Scientif. Comput. 36 (2014), A1797-A1812. MR 3246904, 10.1137/130927292
Reference: [15] Huang, J., Lin, C. F.: Numerical approach to computing nonlinear $ H_\infty $ control laws..J. Guid. Control Dynam. 18 (1995), 989-994. 10.2514/3.21495
Reference: [16] Huang, C. S., Wang, S., Chen, C. S., Li, Z. C.: A radial basis collocation method for Hamilton-Jacobi-Bellman equations..Automatica 42 (2006), 2201-2207. MR 2259164, 10.1016/j.automatica.2006.07.013
Reference: [17] Kang, W., Bedrossian, N.: Pseudospectral optimal control theory makes debut flight, Saves {NASA} 1m in Under Three Hours..SIAM News 40 (2007).
Reference: [18] Kang, W., Gong, Q., Ross, I. M., Fahroo, F.: On the convergence of nonlinear optimal control using pseudospectral methods for feedback linearizable systems..Int. J. Robust Nonlin. 17 (2007), 1251-1277. MR 2354643, 10.1002/rnc.1166
Reference: [19] Kirk, D. E.: Optimal Control Therory: An Introduction..Prentice-Hall, New Jersey 1970.
Reference: [20] Kleinman, D.: On an iterative technique for Riccati equation computations..IEEE Trans. Automat. Control 13 (1968), 114-115. 10.1109/tac.1968.1098829
Reference: [21] Lancaster, P., Rodman, L.: Algebraic Riccati Equations..Clarendon, Wotton-under-Edge 1995. MR 1367089
Reference: [22] Lewis, F. L., Syrmos, V. L.: Optimal Control..John Wiley, New York 1995. MR 0833285
Reference: [23] Liberzon, D.: Calculus of Variations and Optimal Control Theory..Princeton University Press 2012. MR 2895149
Reference: [24] Nagy, Z. K., Braatz, R D.: Open-loop and closed-loop robust optimal control of batch processes using distributional and worst-case analysis..J. Process Control. 14 (2004), 411-422. 10.1016/j.jprocont.2003.07.004
Reference: [25] Nik, H. S., Shateyi, S.: Application of optimal HAM for finding feedback control of optimal control problems..Math. Probl. Eng. 2013 (2013), 1-10. MR 3043723, 10.1155/2013/914741
Reference: [26] Orszag, S. A.: Comparison of pseudospectral and spectral approximation..Stud. Appl. Math. 51 (1972), 253-259. 10.1002/sapm1972513253
Reference: [27] Parand, K., Rezaei, A. R., Ghaderi, S. M.: A modified pseudospectral scheme for accurate solution of Bang-Bang optimal control problems..Comm. Nonlinear Sci. Numer. Simul. 16 (2011), 274-283. MR 2679180, 10.1016/j.cnsns.2010.03.022
Reference: [28] Rakhshan, S. A., Effati, S., Kamyad, A. Vahidian: Solving a class of fractional optimal control problems by the Hamilton-Jacobi-Bellman equation..J. Vib. Control 1 (2016), 1-16. MR 3785617
Reference: [29] Reisinger, C., Forsyth, P. A.: Piecewise constant policy approximations to Hamilton-Jacobi-Bellman equations..Appl. Numer. Math. 103 (2016), 27-47. MR 3458022, 10.1016/j.apnum.2016.01.001
Reference: [30] Ross, I. M., Fahroo, F.: Pseudospectral knotting methods for solving nonsmooth optimal control problems..J. Guid. Control Dynam. 27 (2004), 397-405. 10.2514/1.3426
Reference: [31] Sabeh, Z., Shamsi, M., Dehghan, M.: Distributed optimal control of the viscous Burgers equation via a Legendre pseudo-spectral approach..
Reference: [32] Taher, A. H. Saleh, Malek, A., Momeni-Masuleh, S. H.: Chebyshev differentiation matrices for efficient computation of the eigenvalues of fourth-order Sturm-Liouville problems..Appl. Math. Model. 37 (2013), 4634-4642. MR 3020599, 10.1016/j.apm.2012.09.062
Reference: [33] Schafer, R. D.: An Introduction to Nonassociative Algebras..Stillwater, Oklahoma 1969.
Reference: [34] Shamsi, M.: A modified pseudospectral scheme for accurate solution of Bang-Bang optimal control problems..Optimal Control Appl. Methods 32 (2010), 668-680. MR 2871837, 10.1002/oca.967
Reference: [35] Shamsi, M., Dehghan, M.: Determination of a control function in three-dimensional parabolic equations by Legendre pseudospectral method..Numer. Methods Partial Differential Equations 28 (2012), 74-93. MR 2864659, 10.1002/num.20608
Reference: [36] Swaidan, W., Hussin, A.: Feedback control method using Haar wavelet operational matrices for solving optimal control problems..Abs. Appl. Anal. 2013 (2013), 1-8. MR 3093751, 10.1155/2013/240352
Reference: [37] Trefethen, L. N.: Spectral Methods in Matlab..SIAM, Philadelphia 2000. MR 1776072, 10.1137/1.9780898719598
Reference: [38] Vlassenbroeck, J., Doreen, R. Van: A Chebyshev technique for solving nonlinear optimal control problems..IEEE Trans. Automat. Control 33 (1988), 333-340. MR 0931197, 10.1109/9.192187
Reference: [39] Wang, S., Gao, F., Teo, K. L.: An upwind finite-difference method for the approximation of viscosity solutions to Hamilton-Jacobi-Bellman equations..IMA J. Math. Control I. 17 (2000), 167-178. MR 1769274, 10.1093/imamci/17.2.167
Reference: [40] Yan, Zh., Wang, J.: Model predictive control of nonlinear systems with unmodeled dynamics based on feedforward and recurrent neural networks..IEEE Trans. Ind. Informat. 8 (2012), 746-756. 10.1109/tii.2012.2205582
Reference: [41] Yershov, D. S., Frazzoli, E.: Asymptotically optimal feedback planning using a numerical Hamilton-Jacobi-Bellman solver and an adaptive mesh refinement..Int. J. Robot. Res. 35 (2016), 565-584. 10.1177/0278364915602958
Reference: [42] Yong, J., Zhou, X. Y.: Stochastic Controls: Hamiltonian Systems and HJB Equations..Springer-Verlag, New York 1999. MR 1696772
.

Files

Files Size Format View
Kybernetika_54-2018-4_1.pdf 1.044Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo