Previous |  Up |  Next

Article

Title: Dependence of hidden attractors on non-linearity and Hamilton energy in a class of chaotic system (English)
Author: Zhang, Ge
Author: Wang, Chunni
Author: Alsaedi, Ahmed
Author: Ma, Jun
Author: Ren, Guodong
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 54
Issue: 4
Year: 2018
Pages: 648-663
Summary lang: English
.
Category: math
.
Summary: Non-linearity is essential for occurrence of chaos in dynamical system. The size of phase space and formation of attractors are much dependent on the setting of nonlinear function and parameters. In this paper, a three-variable dynamical system is controlled by different nonlinear function thus a class of chaotic system is presented, the Hamilton function is calculated to find the statistical dynamical property of the improved dynamical systems composed of hidden attractors. The standard dynamical analysis is confirmed in numerical studies, and the dependence of attractors and Hamilton energy on non-linearity selection is discussed. It is found that lower average Hamilton energy can be detected when intensity of nonlinear function is enhanced. It indicates that non-linearity can decrease the energy cost triggering for dynamical behaviors. (English)
Keyword: Helmholtz theorem
Keyword: chaos
Keyword: hidden attractor
Keyword: bifurcation
Keyword: Hamilton energy
MSC: 37B25
MSC: 37L30
idZBL: Zbl 06987027
idMR: MR3863249
DOI: 10.14736/kyb-2018-4-0648
.
Date available: 2018-10-30T14:37:56Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147417
.
Reference: [1] Ahmad, W. M., Sprott, J. C.: Chaos in fractional-order autonomous nonlinear systems..Chaos 6 (2003), 339-351. 10.1016/s0960-0779(02)00438-1
Reference: [2] Aihara, K., Takabe, T., Toyoda, M.: Chaotic neural networks..Phys. Lett. A 144 (2001), 333-340. MR 1045128, 10.1016/0375-9601(90)90136-c
Reference: [3] Aram, Z., Jafari, S., al., J. Ma et: Using chaotic artificial neural networks to model memory in the brain..Commun. Nonlinear Sci. Numer. Simulat. 44 (2017), 449-459. MR 3554829, 10.1016/j.cnsns.2016.08.025
Reference: [4] Bao, B. C., Xu, J. P., Liu, Z.: Initial state dependent dynamical behaviors in a Memristor based chaotic circuit..Chinese Phys. Lett. 27 (2010), 070504. 10.1088/0256-307x/27/7/070504
Reference: [5] Barati, K., Jafari, S., al., J. C. Sprott et: Simple chaotic flows with a curve of equilibria..Int. J. Bifurcat. Chaos 26 (2016), 1630034. MR 3574802, 10.1142/s0218127416300342
Reference: [6] Barrow-Green, J.: Poincaré and the three body problem..Amer. Math. Soc. 2 (1997). MR 1415387
Reference: [7] Chua, L.: Memristor-the missing circuit element..IEEE Trans. Circ. Theory 18 (1971), 507-519. 10.1109/tct.1971.1083337
Reference: [8] Dantsev, D.: A Novel type of chaotic attractor for quadratic systems without equilibriums..Int. J. Bifurcat. Chaos 12 (2002), 659-661. 10.1142/s0218127402004620
Reference: [9] Ditto, W. L., Rauseo, S. N., Spano, M. L.: Experimental control of chaos..Phys. Rev. Lett. 65 (1991), 3211-3214. 10.1103/physrevlett.65.3211
Reference: [10] Dudkowski, D., Jafari, S., al., T. Kapitaniak et: Hidden attractors in dynamical systems..Phys. Rep. 637 (2016), 1-50. MR 3510463, 10.1016/j.physrep.2016.05.002
Reference: [11] Ermakov, I. V., Kingni, S. T., al., V. Z. Tronciu et: Chaotic semiconductor ring lasers subject to optical feedback: Applications to chaos-based communications..Optics Commun. 286 (2013), 265-272. 10.1016/j.optcom.2012.08.063
Reference: [12] Feigenbaum, M. J.: The onset spectrum of turbulence..Phys. Lett. A 74 (1979), 375-378. MR 0591635, 10.1016/0375-9601(79)90227-5
Reference: [13] Garfinkel, A., Spano, M. L., al., W. L. Ditto et: Controlling cardiac chaos..Science 257 (1992), 1230-1235. 10.1126/science.1519060
Reference: [14] Gotthans, T., Petržela, J.: New class of chaotic systems with circular equilibrium..Nonlinear Dyn. 81 (2015), 1141-1149. MR 3367144, 10.1007/s11071-015-2056-7
Reference: [15] Gotthans, T., Sprott, J. C., Petržela, J.: Simple Chaotic Flow with Circle and Square Equilibrium..Int. J. Bifurcat. Chaos 26 (2016), 1650137. MR 3533673, 10.1142/s0218127416501376
Reference: [16] Guo, Y. L., Qi, G. Y., Hamam, Y.: A multi-wing spherical chaotic system using fractal process..Nonlinear Dyn. 85 (2016), 2765-2775. MR 3367161, 10.1007/s11071-016-2861-7
Reference: [17] Hu, X., Liu, C., al., L. Liu et: Multi-scroll hidden attractors in improved Sprott A system..Nonlinear Dyn. 86 (2016), 1725-1734. 10.1007/s11071-016-2989-5
Reference: [18] Itoh, M., Chua, L. O.: Memristor oscillators..Int. J. Bifurcat. Chaos 8 (2008), 3183-3206. MR 2487909, 10.1142/s0218127408022354
Reference: [19] Jafari, M. A., Mliki, E., al., A. Akgul et: Chameleon: the most hidden chaotic flow..Nonlinear Dyn. 88 (2017), 2303-2317. MR 3650512, 10.1007/s11071-017-3378-4
Reference: [20] Jafari, S., Sprott, J. C.: Simple chaotic flows with a line equilibrium..Chaos Solutons Fractals 57 (2013), 79-84. Zbl 1355.37056, MR 3128600, 10.1016/j.chaos.2013.08.018
Reference: [21] Jafari, S., Sprott, J. C., al., V. T. Pham et: Simple chaotic 3D flows with surfaces of equilibria..Nonlinear Dyn. 86 (2016), 1349-1358. 10.1007/s11071-016-2968-x
Reference: [22] Jia, B., Gu, H. G., al., L. Li et: Dynamics of period-doubling bifurcation to chaos in the spontaneous neural firing patterns..Cogn. Neurodyn. 6 (2012), 89-106. 10.1007/s11571-011-9184-7
Reference: [23] Kennedy, M. P.: Chaos in the Colpitts oscillator..IEEE Trans. Circ. Syst. I 41 (1994), 711-774. 10.1109/81.331536
Reference: [24] Kobe, D. H.: Helmholtz's theorem revisited..Amer. J. Physics 54 (1986), 552-554. 10.1119/1.14562
Reference: [25] Kwok, H. S., Tang, W. K. S.: A fast image encryption system based on chaotic maps with finite precision representation..Chaos Solitons Fractals 32 (2007), 1518-1529. MR 2286314, 10.1016/j.chaos.2005.11.090
Reference: [26] Leonov, G. A., Kuznetsov, N. V., Vagaitsev, V. I.: Hidden attractor in smooth Chua systems..Physica D 241 (2012), 1482-1486. MR 2957820, 10.1016/j.physd.2012.05.016
Reference: [27] Leonov, G. A., Kuznetsov, N. V., Vagaitsev, V. I.: Localization of hidden Chua's attractors..Phys. Lett. A 375 (2011), 2230-2233. Zbl 1242.34102, MR 2800438, 10.1016/j.physleta.2011.04.037
Reference: [28] Leonov, G. A., Kuznetsov, N. V., Vagaitsev, V. I.: Hidden attractor in smooth Chua systems..Physica D 241 (2012), 1482-1486. MR 2957820, 10.1016/j.physd.2012.05.016
Reference: [29] Leonov, G. A., Kuznetsov, N. V., Mokaev, T. N.: Homoclinic orbit and hidden attractor in the Lorenz-like system describing the fluid convection motion in the rotating cavity..Commun. Nonlinear Sci. Numer. Simulat. 28 (2015), 166-176. MR 3348101, 10.1016/j.cnsns.2015.04.007
Reference: [30] Li, C., Li, S., al., M. Asim et: On the security defects of an image encryption scheme..Image Vision Computing 27 (2009), 1371-1381. 10.1016/j.imavis.2008.12.008
Reference: [31] Li, Y. Y., G., H., Gu: The distinct stochastic and deterministic dynamics between period-adding and period-doubling bifurcations of neural bursting patterns..Nonlinear Dyn. 87 (2017), 2541-2562. 10.1007/s11071-016-3210-6
Reference: [32] Li, X., Li, C., Lee, I. K.: Chaotic image. 125 (2016), 48-63.. 10.1016/j.sigpro.2015.11.017
Reference: [33] Li, F., Yao, C. G.: The infinite-scroll attractor and energy transition in chaotic circuit..Nonlinear Dyn. 84 (2016), 2305-2315. MR 3504299, 10.1007/s11071-016-2646-z
Reference: [34] Li, T. Y., Yorke, J. Y.: Period three implies Chaos..Amer. Math. Monthly 82 (1975), 985-992. MR 0385028, 10.2307/2318254
Reference: [35] Lorenz, E. N.: Deterministic nonperiodic flow..J. Atmospher. Sci. 20 (1963), 130-141. 10.1175/1520-0469(1963)020<0130:dnf>2.0.co;2
Reference: [36] Lv, M., Ma, J.: Multiple modes of electrical activities in a new neuron model under electromagnetic radiation..Neurocomputing 205 (2016), 375-381. 10.1016/j.neucom.2016.05.004
Reference: [37] Lv, M., Wang, C., al., G. Ren et: Model of electrical activity in a neuron under magnetic flow effect..Nonlinear Dyn. 85 (2016), 1479-1490. 10.1007/s11071-016-2773-6
Reference: [38] Ma, J., Wu, X. Y., al., R. T. Chu et: Selection of multi-scroll attractors in Jerk circuits and their verification using Pspice..Nonlinear Dyn. 76 (2014), 1951-1962. 10.1007/s11071-014-1260-1
Reference: [39] Ma, J., Li, A. B., al., Z. S. Pu et: A time-varying hyperchaotic system and its realization in circuit..Nonlinear Dyn. 62 (2010), 535-541. 10.1007/s11071-010-9739-x
Reference: [40] Ma, J., Mi, L., al., P. Zhou et: Phase synchronization between two neurons induced by coupling of electromagnetic field..Appl. Math. Comput. 307 (2017), 321-328. MR 3632742, 10.1016/j.amc.2017.03.002
Reference: [41] Ma, J., Song, X. L., al., J. Tang et: Wave emitting and propagation induced by autapse in a forward feedback neuronal network..Neurocomputing 167 (2015), 378-389. 10.1016/j.neucom.2015.04.056
Reference: [42] Ma, J., Wu, F., al., W. Jin et: Calculation of Hamilton energy and control of dynamical systems with different types of attractors..Chaos 27 (2017), 481-495. MR 3650956, 10.1063/1.4983469
Reference: [43] Ma, J., Wu, F. Q., al., G. D. Ren et: A class of initials-dependent dynamical systems..Appl. Math. Comput. 298 (2017), 65-76. MR 3582328, 10.1016/j.amc.2016.11.004
Reference: [44] Ma, J., Wu, F., Wang, C.: Synchronization behaviors of coupled neurons under electromagnetic radiation..Int. J. Mod Phys. B 31 (2017), 1650251. MR 3599028, 10.1142/s0217979216502519
Reference: [45] Ma, J., Zhang, A. H., al., Y. F. Xia et: Optimize design of adaptive synchronization controllers and parameter observers in different hyperchaotic systems..Appl. Math. Comput. 215 (2010), 3318-3326. MR 2576820, 10.1016/j.amc.2009.10.020
Reference: [46] May, R. M.: Simple mathematical models with very complicated dynamics..Nature 261 (1976), 459-467. Zbl 0527.58025, 10.1038/261459a0
Reference: [47] Molaie, M., Jafari, S., al., J. C. Sprott et: Simple chaotic flows with one stable equilibrium..Int. J. Bifurcat. Chaos (2013), 1350188. MR 3150373, 10.1142/s0218127413501885
Reference: [48] Muthuswamy, B.: Implementing memristor based chaotic circuits..Int. J. Bifurcat. Chaos 20 (2010), 1335-1350. 10.1142/s0218127410026514
Reference: [49] Pham, V- T., Jafari, S., al., X. Wang X et: A chaotic system with different shapes of equilibria..Int. J. Bifurcat. Chaos 26 (2016), 1650069. MR 3494063, 10.1142/s0218127416500693
Reference: [50] Pham, V. T., Volos, C., Jafari, S.: A Chaotic system with different families of hidden attractors..Int. J. Bifurcat. Chaos 26 (2016), 1650139. MR 3533675, 10.1142/s021812741650139x
Reference: [51] Piper, J. R., Sprott, J. C.: Simple autonomous chaotic circuit..IEEE Trans. Circ. Syst. II 57 (2010), 730-734. 10.1109/tcsii.2010.2058493
Reference: [52] Qi, G. Y., Chen, G. R.: A spherical chaotic system..Nonlinear Dyn. 81 (2015), 1381-1392. MR 3367161, 10.1007/s11071-015-2075-4
Reference: [53] Ren, G. D., Xu, Y., Wang, C. N.: Synchronization behavior of coupled neuron circuits composed of memristors..Nonlinear Dyn. 88 (2017), 893-901. 10.1007/s11071-015-2075-4
Reference: [54] Ryeu, J. K., Aihara, K., Tsuda, I.: Fractal encoding in a chaotic neural network..Phys. Rev. E 64 (2001), 046202. 10.1103/physreve.64.046202
Reference: [55] Shaw, R.: The dripping faucet as a model chaotic system..Aerial Press, Santa Cruz 1984. MR 1101814
Reference: [56] Song, X. L., Jin, W. Y., Ma, J.: Energy dependence on the electric activities of a neuron..Chinese Phys. B 24 (2015), 604-609. 10.1088/1674-1056/24/12/128710
Reference: [57] Strukov, D. B., Snider, G. S., al., D. R. Stewart et: The missing memristor found..Nature 453( 2008), 80-83. 10.1038/nature06932
Reference: [58] Wang, Z. H., Cang, S. J., al., E. O. Ochola et: A hyperchaotic system without equilibrium..Nonlinear Dyn. 69 (2012), 531-537. MR 2929891, 10.1007/s11071-011-0284-z
Reference: [59] Wang, X., Chen, G. R.: Constructing a chaotic system with any number of equilibria..Nonlinear Dyn. 71 (2013), 429-436. MR 3015249, 10.1007/s11071-012-0669-7
Reference: [60] Wang, C., Chu, R., Ma, J.: Controlling a chaotic resonator by means of dynamic track control..Complexity 21 (2015), 370-378. MR 3407876, 10.1002/cplx.21572
Reference: [61] Wang, S., Kuang, J., al., J. Li et: Chaos-based secure communications in a large community..Phys. Rev. E 66 (2002), 065202. 10.1103/physreve.66.065202
Reference: [62] Wang, C. N., Ma, J., al., Y. Liu et: Chaos control, spiral wave formation, and the emergence of spatiotemporal chaos in networked Chua circuits..Nonlinear Dyn. 67 (2012), 139-146. 10.1007/s11071-011-9965-x
Reference: [63] Wang, C. N., Wang, Y., Ma, J.: Calculation of Hamilton energy function of dynamical system by using Helmholtz theorem..Acta Physica Sinica 65 (2016), 240501.
Reference: [64] Wolf, A., Swift, J. B., al., H. L. Swinney et: Determining Lyapunov exponents from a time series..Physica D 16 (1985), 285-317. MR 0805706, 10.1016/0167-2789(85)90011-9
Reference: [65] Wu, C. W., Chua, L. O.: A simple way to synchronize chaotic systems with applications to secure communication systems..Int. J. Bifurcat. Chaos 3 (1993), 1619-1627. 10.1142/s0218127493001288
Reference: [66] Wu, X. Y., Ma, J., al., L. H. Yuan et: Simulating electric activities of neurons by using PSPICE..Nonlinear Dyn. 75 (2014), 113-126. MR 3144840, 10.1007/s11071-013-1053-y
Reference: [67] Yalcin, M. E: Multi-scroll and hypercube attractors from a general jerk circuit using Josephson junctions..Chaos Solutons Fractals 34 (2007), 1659-1666. 10.1016/j.chaos.2006.04.058
Reference: [68] Yang, T.: A survey of chaotic secure communication systems..Int. J. Comput. Cogn. 2 (2004), 81-130.
Reference: [69] Zarei, A.: Complex dynamics in a 5-D hyper-chaotic attractor with four-wing, one equilibrium and multiple chaotic attractors..Nonlinear Dyn. 81 (2015), 585-605. MR 3355053, 10.1007/s11071-015-2013-5
Reference: [70] Zarei, A., Tavakoli, S.: Hopf bifurcation analysis and ultimate bound estimation of a new 4-D quadratic autonomous hyper-chaotic system..Appl. Math. Comput. 291 (2016), 323-339. MR 3534407, 10.1016/j.amc.2016.07.023
.

Files

Files Size Format View
Kybernetika_54-2018-4_2.pdf 2.441Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo