Previous |  Up |  Next

Article

Title: Chaos synchronization of TSUCS unified chaotic system, a modified function projective control method (English)
Author: Tirandaz, Hamed
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 54
Issue: 4
Year: 2018
Pages: 829-843
Summary lang: English
.
Category: math
.
Summary: The synchronization problem of the three-scroll unified chaotic system (TSUCS) is studied in this paper. A modified function projective synchronization (MFPS) method is developed to achieve this goal. Furthermore, the only parameter of the TSUCS unified chaotic system is considered unknown and estimated with an appropriate parameter estimation law. MFPS method is investigated for both identical and non-identical chaotic systems. Lyapunov stability theorem is utilized to verify the proposed feedback control laws and validate the proposed synchronization scheme. Finally, some numerical simulations are presented to assess the effectiveness of the theoretical discussions. (English)
Keyword: chaos synchronization
Keyword: three-scroll unified chaotic system (TSUCS)
Keyword: modified function projective synchronization (MFPS)
Keyword: nonlinear dynamics
MSC: 65Pxx
MSC: 93Cxx
MSC: 93Dxx
idZBL: Zbl 06987037
idMR: MR3863259
DOI: 10.14736/kyb-2018-4-0829
.
Date available: 2018-10-30T14:57:15Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147427
.
Reference: [1] Adloo, H., Roopaei, M.: Review article on adaptive synchronization of chaotic systems with unknown parameters..Nonlinear Dynamics 65 (2011), 1-2, 141-159. MR 2812015, 10.1007/s11071-010-9880-6
Reference: [2] Aghababa, M. P., Heydari, A.: Chaos synchronization between two different chaotic systems with uncertainties, external disturbances, unknown parameters and input nonlinearities..Appl. Math. Modelling 36 (2012), 4, 1639-1652. MR 2878135, 10.1016/j.apm.2011.09.023
Reference: [3] Cai, L., Zhou, J.: Impulsive stabilization and synchronization of electro-mechanical gyrostat systems..Nonlinear Dynamics 70 (2012) 1, 541-549. MR 2991292, 10.1007/s11071-012-0474-3
Reference: [4] Chen, G., Ueta, T.: Yet another chaotic attractor..Int. J. Bifurcation Chaos 9 (1999), 07, 1465-1466. Zbl 0962.37013, MR 1729683, 10.1142/s0218127499001024
Reference: [5] Chua, L. O., Lin, G.-N.: Canonical realization of chua's circuit family..IEEE Trans. Circuits Syst. 37 (1990), 7, 885-902. MR 1061874, 10.1109/31.55064
Reference: [6] Chun-Lai, L., Mei, Z., Feng, Z., Xuan-Bing, Y.: Projective synchronization for a fractional-order chaotic system via single sinusoidal coupling..Optik - Int. J. Light Electron Optics 127 (2016), 5, 2830-2836. 10.1016/j.ijleo.2015.11.197
Reference: [7] Du, H., Zeng, Q., Wang, C.: Modified function projective synchronization of chaotic system..Chaos, Solitons, Fractals 42 (2009), 4, 2399-2404. Zbl 1198.93011, MR 2299092, 10.1016/j.chaos.2009.03.120
Reference: [8] Elhadj, Z., Sprott, J. C.: The unified chaotic system describing the lorenz and chua systems..Facta Univers., Ser. Electronics and Energetics 23 (2010), 3, 345-355. 10.2298/fuee1003345e
Reference: [9] al., K.-S. Hong et: Adaptive synchronization of two coupled chaotic hindmarsh-rose neurons by controlling the membrane potential of a slave neuron..Appl. Math. Modelling 37 (2013), 4, 2460-2468. MR 3002332, 10.1016/j.apm.2012.06.003
Reference: [10] Hou, Y.-Y., Liau, B.-Y., Chen, H.-C.: Synchronization of unified chaotic systems using sliding mode controller..Math. Problems Engrg. 2012. MR 3007783
Reference: [11] Hu, C., Jiang, H.: Stabilization and synchronization of unified chaotic system via impulsive control..In: Abstract and Applied Analysis, Hindawi Publishing Corporation 2014, pp. 1-8. MR 3228069, 10.1155/2014/369842
Reference: [12] Li, G.-H.: Modified projective synchronization of chaotic system..Chaos, Solitons, Fractals 32 (2007), 5, 1786-1790. Zbl 1134.37331, MR 2299092, 10.1016/j.chaos.2005.12.009
Reference: [13] Li, C., Liao, X., Zhang, X.: Impulsive synchronization of chaotic systems..Chaos: An Interdisciplinary J. Nonlinear Sci. 15 (2005), 2, 023104. MR 2150221, 10.1063/1.1899823
Reference: [14] Liang, H., Wang, Z., Yue, Z., Lu, R.: Generalized synchronization and control for incommensurate fractional unified chaotic system and applications in secure communication..Kybernetika 48 (2012), 2, 190-205. Zbl 1256.93084, MR 2954320
Reference: [15] Lorenz, E. N.: Deterministic nonperiodic flow..J. Atmospher. Sci. 20 (1963), 2, 130-141. 10.1175/1520-0469(1963)020<0130:dnf>2.0.co;2
Reference: [16] Lü, J., Chen, G.: A new chaotic attractor coined..Int. J. Bifurcation Chaos 12 (2002), 03, 659-661. Zbl 1063.34510, MR 1894886, 10.1142/s0218127402004620
Reference: [17] Lü, J., Chen, G., Cheng, D., Čelikovský, S.: Bridge the gap between the Lorenz system and the Chen system..Int. J. Bifurcation Chaos 12 (2002), 12, 2917-2926. MR 1956411, 10.1142/s021812740200631x
Reference: [18] Ma, T., Zhang, J., Zhou, Y., Wang, H.: Adaptive hybrid projective synchronization of two coupled fractional-order complex networks with different sizes..Neurocomputing 164 (2015), 182-189. 10.1016/j.neucom.2015.02.071
Reference: [19] Mainieri, R., Rehacek, J.: Projective synchronization in three-dimensional chaotic systems..Phys. Rev. Lett. 82 (1999), 15, 3042. 10.1103/physrevlett.82.3042
Reference: [20] Nik, H. S., Saberi-Nadjafi, J., Effati, S., Gorder, R. A. Van: Hybrid projective synchronization and control of the baier-sahle hyperchaotic flow in arbitrary dimensions with unknown parameters..Appl. Math. Comput. 248 (2014), 55-69. MR 3276664, 10.1016/j.amc.2014.08.108
Reference: [21] Ott, E., Grebogi, C., Yorke, J. A.: Controlling chaos..Phys. Rev. Lett. 64 (1990), 11, 1196-1199. Zbl 0964.37502, MR 1041523, 10.1103/physrevlett.64.1196
Reference: [22] Pan, L., Zhou, W., Fang, J., Li, D.: Synchronization and anti-synchronization of new uncertain fractional-order modified unified chaotic systems via novel active pinning control..Comm. Nonlinear Sci. Numer. Simul. 15 (2010), 12, 3754-3762. MR 2652647, 10.1016/j.cnsns.2010.01.025
Reference: [23] Pan, L., Zhou, W., Fang, J., Li, D.: A new three-scroll unified chaotic system coined..Int. J. Nonlinear Sci. 10 (2010), 4, 462-474. MR 2834932
Reference: [24] Park, J. H.: Adaptive synchronization of a unified chaotic system with an uncertain parameter..Int. J. Nonlinear Sci. Numer. Simulation 6 (2005), 2, 201-206. MR 3110160, 10.1515/ijnsns.2005.6.2.201
Reference: [25] Pecora, L. M., Carroll, T. L.: Synchronization in chaotic systems..Phys. Rev. Lett. 64 (1990), 8, 821. Zbl 1098.37553, MR 1038263, 10.1103/physrevlett.64.821
Reference: [26] Richter, H.: Controlling chaotic systems with multiple strange attractors..Physics Letters A 300 (2002), 2, 182-188. MR 1928022, 10.1016/s0375-9601(02)00183-4
Reference: [27] Rosenblum, M. G., Pikovsky, A. S., Kurths, J.: From phase to lag synchronization in coupled chaotic oscillators..Phys. Rev. Lett. 78 (1997), 22, 4193. MR 1869044, 10.1103/physrevlett.78.4193
Reference: [28] Shen, C., Yu, S., Lü, J., Chen, G.: A systematic methodology for constructing hyperchaotic systems with multiple positive Lyapunov exponents and circuit implementation..IEEE Tran. Circuits Systems I 61 (2014), 3, 854-864. 10.1109/tcsi.2013.2283994
Reference: [29] Shen, C., Yu, S., Lü, J., Chen, G.: Designing hyperchaotic systems with any desired number of positive Lyapunov exponents via a simple model..IEEE Trans. Circuits Systems I 61 (2014), 8, 2380-2389. 10.1109/tcsi.2014.2304655
Reference: [30] Sun, J., Shen, Y., Wang, X., Chen, J.: Finite-time combination-combination synchronization of four different chaotic systems with unknown parameters via sliding mode control..Nonlinear Dynamics 76 (1) (2014) 383-397. MR 3189178, 10.1007/s11071-013-1133-z
Reference: [31] Tan, S., Wang, Y., Lü, J.: Analysis and control of networked game dynamics via a microscopic deterministic approach..IEEE Trans. Automat. Control 61 (2016), 12, 4118-4124. MR 3582527, 10.1109/tac.2016.2545106
Reference: [32] Tirandaz, H.: On adaptive modified projective synchronization of a supply chain management system..Pramana 89 (2017), 6. 10.1007/s12043-017-1482-0
Reference: [33] Tirandaz, H., Aminabadi, S. Saiedi, Tavakoli, H.: Chaos synchronization and parameter identification of a finance chaotic system with unknown parameters, a linear feedback controller..In: Alexandria Engineering Journal, 2017. 10.1016/j.aej.2017.03.041
Reference: [34] Wang, Q., Yu, S., Li, C., Lü, J., Fang, X., Guyeux, C., Bahi, J. M.: Theoretical Design and FPGA-based implementation of higher-dimensional digital chaotic systems..IEEE Trans. Circuits Systems I 63 (2016), 3, 401-412. MR 3488842, 10.1109/tcsi.2016.2515398
Reference: [35] Wu, X., Guan, Z.-H., Li, T.: Chaos synchronization between unified chaotic system and genesio system..In: International Symposium on Neural Networks, Springer, 2007, pp. 8-15. 10.1007/978-3-540-72393-6\_2
Reference: [36] Wu, X., Li, J., Upadhyay, R. K.: Chaos control and synchronization of a three species food chain model via Holling functional response..Int. J. Comput. Math. 87 (2010) 199-214. MR 2598736, 10.1080/00207160801993232
Reference: [37] Wu, H., Xu, B. L., Fan, C., Wu, X. Y.: Chaos synchronization between unified chaotic system and Rossler system..In: Applied Mechanics and Materials 321, Trans. Tech. Publ. 2013, pp. 2464-2470. MR 2333731, 10.4028/www.scientific.net/amm.321-324.2464
Reference: [38] Yan, Z.: Chaos Q-S synchronization between Rossler system and the new unified chaotic system..Phys. Lett. A 334 (2005), 4, 406-412. 10.1016/j.physleta.2004.11.042
Reference: [39] Yazdanbakhsh, O., Hosseinnia, S., Askari, J.: Synchronization of unified chaotic system by sliding mode/mixed h 2/h control..Nonlinear Dynamics 67 (2012), 3, 1903-1912. MR 2877427, 10.1007/s11071-011-0117-0
Reference: [40] Yu, Y.: Adaptive synchronization of a unified chaotic system..Chaos, Solitons, Fractals 36 (2008), 2, 329-333. 10.1016/j.chaos.2006.06.104
Reference: [41] Yu, J., Chen, B., Yu, H., Gao, J.: Adaptive fuzzy tracking control for the chaotic permanent magnet synchronous motor drive system via backstepping..Nonlinear Analysis: Real World Appl. 12 (2011), 1, 671-681. MR 2729052, 10.1016/j.nonrwa.2010.07.009
Reference: [42] Zhang, X., Zhu, H., Yao, H.: Analysis and adaptive synchronization for a new chaotic system..J. Dynamical Control Systems 18 (2012), 4, 467-477. MR 2980534, 10.1007/s10883-012-9155-2
Reference: [43] Zhao, Q., Yin, H.: Gbits/s physical-layer stream ciphers based on chaotic light..Optik, Elsevier 124 (2013) 15, 2161-2164. 10.1016/j.ijleo.2012.06.075
.

Files

Files Size Format View
Kybernetika_54-2018-4_12.pdf 1.787Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo