Previous |  Up |  Next

Article

Title: Existence, uniqueness and global asymptotic stability for a class of complex-valued neutral-type neural networks with time delays (English)
Author: Tan, Manchun
Author: Xu, Desheng
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 54
Issue: 4
Year: 2018
Pages: 844-863
Summary lang: English
.
Category: math
.
Summary: This paper explores the problem of delay-independent and delay-dependent stability for a class of complex-valued neutral-type neural networks with time delays. Aiming at the neutral-type neural networks, an appropriate function is constructed to derive the existence of equilibrium point. On the basis of homeomorphism theory, Lyapunov functional method and linear matrix inequality techniques, several LMI-based sufficient conditions on the existence, uniqueness and global asymptotic stability of equilibrium point for complex-valued neutral-type neural networks are obtained. Finally, numerical examples are given to illustrate the feasibility and the effectiveness of the proposed theoretical results. (English)
Keyword: complex-valued neutral-type neural networks
Keyword: existence and uniqueness of equilibrium
Keyword: global asymptotic stability
Keyword: inequality techniques
Keyword: Lyapunov functional
MSC: 37B25
MSC: 92B20
idZBL: Zbl 06987038
idMR: MR3863260
DOI: 10.14736/kyb-2018-4-0844
.
Date available: 2018-11-02T10:31:42Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147440
.
Reference: [1] Boyd, S., Ghaoui, L. E., Feron, E., Balakrishnam, V.: Linear Matrix Inequality in System and Control..SIAM, Philadelphia, 1994. 10.1137/1.9781611970777
Reference: [2] Cao, J. D., Chen, G. R., Li, P.: Global synchronization in an array of delayed neural networks with hybrid coupling..IEEE Trans. Syst. Man Cybern. B 38 (2008), 2, 488-498. 10.1109/tsmcb.2007.914705
Reference: [3] Chen, X. F., Song, Q. K.: Global stability of complex-valued neural networks with both leakage time delay and discrete time delay on time scales..Neurocomputing 121 (2013), 254-264. 10.1016/j.neucom.2013.04.040
Reference: [4] Ding, X. S., Cao, J. D., Alsaedi, A., Alsaadi, F. E., Hayat, T.: Robust fixed-time synchronization for uncertain complex-valued neural networks with discontinuous activation functions..Neural Netw. 90 (2017), 42-55. 10.1016/j.neunet.2017.03.006
Reference: [5] Du, B., Liu, Y., Cao, J. D.: Stability analysis for neutral-type impulsive neural networks with delays..Kybernetika 53 (2017), 3, 513-529. MR 3684683, 10.14736/kyb-2017-3-0513
Reference: [6] Fang, T., Sun, J. T.: Further investigate the stability of complex-valued recurrent neural networks with time-delays..IEEE Trans. Neural Netw. Learn. Syst. 25 (2014), 9, 1709-1713. MR 3453740, 10.1109/tnnls.2013.2294638
Reference: [7] Fang, T., Sun, J. T.: Stability of complex-valued impulsive and switching system and application to the Lu system..Nonlinear Anal. Hybrid Syst. 14 (2014), 38-46. MR 3228049, 10.1016/j.nahs.2014.04.004
Reference: [8] Feng, J. E., Xu, S. Y., Zou, Y.: Delay-dependent stability of neutral type neural networks with distributed delays..Neurocomputing 72 (2009), 10-12, 2576-2580. 10.1016/j.neucom.2008.10.018
Reference: [9] Forti, M., Tesi, A.: New conditions for global stability of neural networks with application to linear and quadratic programming problems..IEEE Trans. Circuits Syst. I 42 (1995), 354-366. MR 1351871, 10.1109/81.641813
Reference: [10] Gong, W. Q., Liang, J. L., Zhang, C. J., Cao, J. D.: Nonlinear measure approach for the stability analysis of complex-valued neural networks..Neural Process. Lett. 44 (2015), 539-554. 10.1007/s11063-015-9475-9
Reference: [11] Guo, R. N., Zhang, Z. Y., Liu, X. P., Lin, C.: Existence, uniqueness, and exponential stability analysis for complex-valued memristor-based BAM neural networks with time delays..Appl. Math. Comput. 311 (2017), 100-117. MR 3658062, 10.1016/j.amc.2017.05.021
Reference: [12] Hirose, A.: Complex-Valued Neural Networks: Theories and Applications..World Scientific, Singapore 2003. MR 2061862, 10.1142/9789812791184
Reference: [13] Hirose, A.: Recent progress in applications of complex-valued neural networks..In: Artif. Intell. Soft. Comput. II, Vol. 6114 (L. Rutkowski et al., eds.), Springer, New York 2010, pp. 42-46. 10.1007/978-3-642-13232-2\_6
Reference: [14] Hu, J., Wang, J.: Global stability of complex-valued recurrent neural networks with time-delays..IEEE Trans. Neural Netw. Learn. Syst. 23 (2012), 6, 853-865. MR 3453740, 10.1109/tnnls.2012.2195028
Reference: [15] Liao, X. F., Liu, Y. L., Wang, H. W., Huang, T. W.: Exponential estimates and exponential stability for neutral-type neural networks with multiple delays..Neurocomputing 149 (2015), 868-883. MR 3593044, 10.1016/j.neucom.2014.07.048
Reference: [16] Liu, X. W., Chen, T. P.: Global Exponential stability for complex-valued recurrent neural networks with asynchronous time delays..IEEE Trans. Neural Netw. Learn. Syst. 27 (2016), 3, 593-606. MR 3465659, 10.1109/tnnls.2015.2415496
Reference: [17] Pan, J., Liu, X. Z., Xie, W. C.: Exponential stability of a class of complex-valued neural networks with time-varying delays..Neurocomputing 164 (2015), 293-299. 10.1016/j.neucom.2015.02.024
Reference: [18] Orman, Z.: New sufficient conditions for global stability of neutral-type neural networks with time delays..Neurocomputing 97 (2012), 141-148. 10.1016/j.neucom.2012.05.016
Reference: [19] Patan, K.: Stability analysis and the stabilization of a class of discrete-time dynamic neural networks..IEEE Trans. Neural Netw. 18 (2007), 3, 660-673. 10.1109/tnn.2007.891199
Reference: [20] Park, J. H., Kwon, O. M.: Further results on state estimation for neural networks of neutral-type with time-varying delay..Appl. Math. Comput. 208 (2009), 1, 69-75. MR 2490770, 10.1016/j.amc.2008.11.017
Reference: [21] Park, J. H., Kwon, O. M., Lee, S. M.: LMI optimization approach on stability for delayed neural networks of neutral-type..Appl. Math. Comput. 196 (2008), 1, 236-244. MR 2382607, 10.1016/j.amc.2007.05.047
Reference: [22] Park, J. H., Park, C. H., Kwon, O. M., Lee, S. M.: A new stability criterion for bidirectional associative memory neural networks of neutral-type..Appl. Math. Comput. 199 (2008), 2, 716-722. MR 2420599, 10.1016/j.amc.2007.10.032
Reference: [23] Shi, K. B., Zhong, S. M., Zhu, H., Liu, X. Z., Zeng, Y.: New delay-dependent stability criteria for neutral-type neural networks with mixed random time-varying delays..Neurocomputing 168 (2015), 896-907. MR 3402310, 10.1016/j.neucom.2015.05.035
Reference: [24] Shu, Y.J., Liu, X.G., Wang, F.X., Qiu, S.B.: Further results on exponential stability of discrete-time BAM neural networks with time-varying delays..Math. Method. Appl. Sci. 40 (2017), 11, 4014-4027. MR 3668827, 10.1002/mma.4281
Reference: [25] Song, Q. K.: Synchronization analysis of coupled connected neural networks with mixed time delays..Neurocomputing 72 (2009), 3907-3914. 10.1016/j.neucom.2009.04.009
Reference: [26] Song, Q. K., Shu, H. Q., Zhao, Z. J., Liu, Y. R., Alsaadi, F. E.: Lagrange stability analysis for complex-valued neural networks with leakage delay and mixed time-varying delays..Neurocomputing 244 (2017), 33-41. 10.1016/j.neucom.2017.03.015
Reference: [27] Song, Q. K., Yan, H., Zhao, Z. J., Liu, Y. R.: Global exponential stability of impulsive complex-valued neural networks with both asynchronous time-varying and continuously distributed delays..Neural Netw. 81 (2016), 1-10. 10.1016/j.neunet.2016.04.012
Reference: [28] Song, Q. K., Zhao, Z. J., Liu, Y. R.: Stability analysis of complex-valued neural networks with probabilistic time-varying delays..Neurocomputing 159 (2015), 96-104. 10.1016/j.neucom.2015.02.015
Reference: [29] Subramanian, K., Muthukumar, P.: Global asymptotic stability of complex-valued neural networks with additive time-varying delays..Cogn. Neurodynamics 11 (2017), 3, 293-306. 10.1007/s11571-017-9429-1
Reference: [30] Tan, M. C.: Global asymptotic stability of fuzzy cellular neural networks with unbounded distributed delays..Neural Process. Lett. 31 (2010), 2, 147-157. 10.1007/s11063-010-9130-4
Reference: [31] Tan, M. C.: Stabilization of coupled time-delay neural networks with nodes of different dimensions..Neural Process. Lett. 43 (2016), 1, 255-268. 10.1007/s11063-015-9416-7
Reference: [32] Tan, Y. X., Jing, K.: Existence and global exponential stability of almost periodic solution for delayed competitive neural networks with discontinuous activations..Math. Method. Appl. Sci. 39 (2016), 11, 2821-2839. MR 3512733, 10.1002/mma.3732
Reference: [33] Tan, M. C., Xu, D. S.: Multiple $\mu$-stability analysis for memristor-based complex-valued neural networks with nonmonotonic piecewise nonlinear activation functions and unbounded time-varying delays..Neurocomputing 275 (2018), 2681-2701. 10.1016/j.neucom.2017.10.038
Reference: [34] Tan, M. C., Zhang, Y. N.: New sufficient conditions for global asymptotic stability of Cohen-Grossberg neural networks with time-varying delays..Nonlinear Anal. Real World Appl. 10 (2009), 2139-2145. MR 2508424, 10.1016/j.nonrwa.2008.03.022
Reference: [35] Tian, X. H., Xu, R.: Stability and Hopf bifurcation of a delayed Cohen-Grossberg neural network with diffusion..Math. Method. Appl. Sci. 40 (2017), 1, 293-305. MR 3583055, 10.1002/mma.3995
Reference: [36] Tu, Z. W., Cao, J. D., Alsaedi, A., Alsaadi, F. E., Hayat, T.: Global lagrange stability of complex-valued neural networks of neutral type with time-varying delays..Complexity 21 (2016), S2, 438-450. MR 3583097, 10.1002/cplx.21823
Reference: [37] Wang, H. M., Duan, S. K., Huang, T. W., Wang, L. D., Li, C. D.: Exponential stability of complex-valued memristive recurrent neural networks..IEEE Trans. Neural Netw. Learn. Syst. 28 (2017), 3, 766-771. MR 3730910, 10.1109/TNNLS.2015.2513001
Reference: [38] Wang, Z. Y., Huang, L. H.: Global stability analysis for delayed complex-valued BAM neural networks..Neurocomputing 173 (2016), 2083-2089. 10.1016/j.neucom.2015.09.086
Reference: [39] Wang, P., Li, Y. K., Ye, Y.: Almost periodic solutions for neutral-type neural networks with the delays in the leakage term on time scales..Math. Method. Appl. Sci. 39 (2016), 15, 4297-4310. MR 3549393, 10.1002/mma.3857
Reference: [40] Wang, L., Xie, Y., Wei, Z., Peng, J.: Stability analysis and absolute synchronization of a three-unit delayed neural network..Kybernetika 51 (2015), 5, 800-813. MR 3445985, 10.14736/kyb-2015-5-0800
Reference: [41] Xie, J., Kao, Y. G., Park, J.H.: $H_\infty$ performance for neutral-type Markovian switching systems with general uncertain transition rates via sliding mode control method..Nonlinear Anal. Hybrid Syst. 27 (2018), 416-436. MR 3729580, 10.1016/j.nahs.2017.10.002
Reference: [42] Xu, C. J., Li, P. L., Pang, Y. C.: Existence and exponential stability of almost periodic solutions for neutral-type BAM neural networks with distributed leakage delays..Math. Method. Appl. Sci. 40 (2017), 6, 2177-2196. MR 3624090, 10.1002/mma.4132
Reference: [43] Xu, X. H., Zhang, J. Y., Shi, J. Z.: Exponential stability of complex-valued neural networks with mixed delays..Neurocomputing 128 (2014), 483-490. 10.1016/j.neucom.2013.08.014
Reference: [44] Zhang, H. G., Gong, D. W., Wang, Z. S.: Synchronization criteria for an array of neutral-type neural networks with hybrid coupling: a novel analysis approach..Neural Process. Lett. 35 (2012), 1, 29-45. 10.1007/s11063-011-9202-0
Reference: [45] Zhang, Z. Y., Liu, X. P., Chen, J., Guo, R. N., Zhou, S. W.: Further stability analysis for delayed complex-valued recurrent neural networks..Neurocomputing 251 (2017), 81-89. 10.1016/j.neucom.2017.04.013
Reference: [46] Zhang, Z. Y., Lin, C., Chen, B.: Global stability criterion for delayed complex-valued recurrent neural networks..IEEE Trans. Neural Netw. Learn. Syst. 25 (2014), 9, 1704-1708. 10.1109/tnnls.2013.2288943
Reference: [47] Zhang, Z. Q., Yu, S. H.: Global asymptotic stability for a class of complex-valued Cohen-Grossberg neural networks with time delays..Neurocomputing 171 (2016), 1158-1166. 10.1016/j.neucom.2015.07.051
Reference: [48] Zeng, X., Li, C. D., Huang, T. W., He, X.: Stability analysis of complex-valued impulsive systems with time delay..Appl. Math. Comput. 256 (2015), 75-82. MR 3316049, 10.1016/j.amc.2015.01.006
Reference: [49] Zheng, C. D., Shan, Q. H., Zhang, H. G.: On stabilization of stochastic Cohen-Grossberg neural networks with mode-dependent mixed time-delays and Markovian switching..IEEE Trans. Neural Netw. Learn. Syst. 24 (2013), 800-811. 10.1109/tnnls.2013.2244613
.

Files

Files Size Format View
Kybernetika_54-2018-4_13.pdf 536.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo