Previous |  Up |  Next

Article

Title: On self-similar subgroups in the sense of IFS (English)
Author: Saltan, Mustafa
Language: English
Journal: Communications in Mathematics
ISSN: 1804-1388
Volume: 26
Issue: 1
Year: 2018
Pages: 1-10
Summary lang: English
.
Category: math
.
Summary: In this paper, we first give several properties with respect to subgroups of self-similar groups in the sense of iterated function system (IFS). We then prove that some subgroups of $p$-adic numbers $\mathbb{Q}_{p}$ are strong self-similar in the sense of IFS. (English)
Keyword: Self-similar group
Keyword: Cantor set
Keyword: $p$-adic integers.
MSC: 11E95
MSC: 28A80
MSC: 47H10
idZBL: Zbl 06996469
idMR: MR3827139
.
Date available: 2018-11-06T16:16:47Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147451
.
Reference: [1] Barnsley, M. F.: Fractals Everywhere.1988, Academic Press, Boston, MR 0977274
Reference: [2] Demir, B., Saltan, M.: A self-similar group in the sense of iterated function system.Far East J. Math. Sci., 60, 1, 2012, 83-99, MR 2953920
Reference: [3] Falconer, K. J.: Fractal Geometry.2003, Mathematical Foundations and Application, John Wiley, MR 2118797
Reference: [4] Gouvêa, F. Q.: $p$-adic Numbers.1997, Springer-Verlag, Berlin, MR 1488696
Reference: [5] Hutchinson, J. E.: Fractals and self-similarity.Indiana Univ. Math. J., 30, 5, 1981, 713-747, Zbl 0598.28011, MR 0625600, 10.1512/iumj.1981.30.30055
Reference: [6] Mandelbrot, B. B.: The Fractal Geometry of Nature.1983, W. H. Freeman and Company, New York, MR 0665254
Reference: [7] Robert, A. M.: A Course in $p$-adic Analysis.2000, Springer, Zbl 0947.11035, MR 1760253
Reference: [8] Saltan, M., Demir, B.: Self-similar groups in the sense of an IFS and their properties.J. Math. Anal. Appl., 408, 2, 2013, 694-704, MR 3085063, 10.1016/j.jmaa.2013.06.040
Reference: [9] Saltan, M., Demir, B.: An iterated function system for the closure of the adding machine group.Fractals, 23, 3, 2015, DOI: 10.1142/S0218348X15500334. MR 3375691, 10.1142/S0218348X15500334
Reference: [10] Schikhof, W. H.: Ultrametric Calculus an Introduction to $p$-adic Calculus.1984, Cambridge University Press, New York, MR 0791759
.

Files

Files Size Format View
ActaOstrav_26-2018-1_1.pdf 386.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo