Previous |  Up |  Next

Article

Title: On $x^n + y^n = \lowercase{n!} z^n$ (English)
Author: Jena, Susil Kumar
Language: English
Journal: Communications in Mathematics
ISSN: 1804-1388
Volume: 26
Issue: 1
Year: 2018
Pages: 11-14
Summary lang: English
.
Category: math
.
Summary: In p.~219 of R.K. Guy's \emph {Unsolved Problems in Number Theory}, 3rd edn., Springer, New York, 2004, we are asked to prove that the Diophantine equation $x^{n} + y^{n} = \lowercase {n!} z^{n}$ has no integer solutions with $n\in \mathbb {N_{+}}$ and $n>2$. But, contrary to this expectation, we show that for $n = 3$, this equation has infinitely many primitive integer solutions, i.e.~the solutions satisfying the condition $\gcd (x, y, z)=1$. (English)
Keyword: Diophantine equation $x^{n} + y^{n} = \lowercase {n!} z^{n}$
Keyword: Diophantine equation $x^{3} + y^{3} = \lowercase {3!} z^{3}$
Keyword: unsolved problems
Keyword: number theory.
MSC: 11D41
MSC: 11D72
idZBL: Zbl 06996470
idMR: MR3827140
.
Date available: 2018-11-06T16:17:28Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147454
.
Reference: [1] Elkies, N. D.: Wiles minus epsilon implies Fermat.Elliptic Curves, Modular Forms & Fermat's Last Theorem, 1995, 38-40, Ser. Number Theory, I, Internat. Press, Cambridge MA.. MR 1363494
Reference: [2] Erdös, P., Obláth, R.: Über diophantische Gleichungen der form $n! = x^p \pm y^p$ and $n! \pm m! = x^p$.Acta Litt. Sci. Szeged, 8, 1937, 241-255,
Reference: [3] Guy, R. K.: Unsolved Problems in Number Theory.2004, Springer Science+Business Media, Inc., New York, Third Edition.. Zbl 1058.11001, MR 2076335
Reference: [4] Ribet, K.: On modular representations of Gal($\overline {\mathbb Q}\setminus \mathbb {Q}$) arising from modular forms.Invent. Math., 100, 1990, 431-476, MR 1047143, 10.1007/BF01231195
.

Files

Files Size Format View
ActaOstrav_26-2018-1_2.pdf 388.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo