Previous |  Up |  Next

Article

Title: Nonlinear $\ast $-Lie higher derivations of standard operator algebras (English)
Author: Ashraf, Mohammad
Author: Ali, Shakir
Author: Wani, Bilal Ahmad
Language: English
Journal: Communications in Mathematics
ISSN: 1804-1388
Volume: 26
Issue: 1
Year: 2018
Pages: 15-29
Summary lang: English
.
Category: math
.
Summary: Let $\mathcal {H}$ be an infinite-dimensional complex Hilbert space and $\mathfrak {A}$~be a standard operator algebra on $\mathcal {H}$ which is closed under the adjoint operation. It is shown that every nonlinear $\ast $-Lie higher derivation $\mathcal {D}=\{{\delta _n}\}_{n\in \mathbb {N}}$ of $\mathfrak {A}$ is automatically an additive higher derivation on $\mathfrak {A}$. Moreover, $\mathcal {D}=\{{\delta _n}\}_{n\in \mathbb {N}}$ is an inner $\ast $-higher derivation. (English)
Keyword: Nonlinear $\ast $-Lie derivation
Keyword: nonlinear $\ast $-Lie higher derivation
Keyword: additive $\ast $-higher derivation
Keyword: standard operator algebra.
MSC: 16W25
MSC: 46K15
MSC: 47B47
idZBL: Zbl 1410.16038
idMR: MR3827141
.
Date available: 2018-11-06T16:19:28Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147455
.
Reference: [1] Brešar, M.: Commuting traces of biadditive mappings, commutativity preserving mappings and Lie mappings.Trans. Amer. Math. Soc., 335, 2, 1993, 525-546, MR 1069746, 10.1090/S0002-9947-1993-1069746-X
Reference: [2] Chen, L., Zhang, J. H.: Nonlinear Lie derivations on upper triangular matrices.Linear Multilinear Algebra, 56, 6, 2008, 725-730, MR 2457697, 10.1080/03081080701688119
Reference: [3] Ferrero, M., Haetinger, C.: Higher derivations of semiprime rings.Comm. Algebra, 30, 2002, 2321-2333, Zbl 1010.16028, MR 1904640, 10.1081/AGB-120003471
Reference: [4] Jing, Wu: Nonlinear $\ast $-Lie derivations of standard operator algebras.Quaestiones Mathematicae, 39, 8, 2016, 1037-1046, MR 3589132
Reference: [5] Jing, W., Lu, F.: Lie derivable mappings on prime rings.Linear Multilinear Algebra, 60, 2012, 167-180, MR 2876765, 10.1080/03081087.2011.576343
Reference: [6] Lu, F. Y., Jing, W.: Characterizations of Lie derivations of $\mathcal {B}(\mathcal {X})$.Linear Algebra Appl., 432, 1, 2010, 89-99, MR 2566460, 10.1016/j.laa.2009.07.026
Reference: [7] III, W. S. Martindale: Lie derivations of primitive rings.Michigan Math. J., 11, 1964, 183-187, MR 0166234, 10.1307/mmj/1028999091
Reference: [8] Mires, C. R.: Lie derivations of von Neumann algebras.Duke Math. J., 40, 1973, 403-409, MR 0315466, 10.1215/S0012-7094-73-04032-5
Reference: [9] Nowicki, A.: Inner derivations of higher orders.Tsukuba J. Math., 8, 2, 1984, 219-225, MR 0767958
Reference: [10] Qi, X. F., Hou, J. C.: Lie higher derivations on nest algebras.Commun. Math. Res., 26, 2, 2010, 131-143, MR 2662638
Reference: [11] Qi, X. F., Hou, J. C.: Characterization of Lie derivations on prime rings.Comm. Algebra, 39, 10, 2011, 3824-3835, MR 2845604, 10.1080/00927872.2010.512588
Reference: [12] Šemrl, P.: Additive derivations of some operator algebras.Illinois J. Math., 35, 1991, 234-240, MR 1091440, 10.1215/ijm/1255987893
Reference: [13] Wei, F., Xiao, Z. K.: Higher derivations of triangular algebras and its generalizations.Linear Algebra Appl., 435, 2011, 1034-1054, MR 2807218, 10.1016/j.laa.2011.02.027
Reference: [14] Xiao, Z. K., Wei, F.: Nonlinear Lie higher derivations on triangular algebras.Linear Multilinear Algebra, 60, 8, 2012, 979-994, MR 2955278
Reference: [15] Yu, W., Zhang, J.: Nonlinear Lie derivations of triangular algebras.Linear Algebra Appl., 432, 11, 2010, 2953-2960, MR 2639258, 10.1016/j.laa.2009.12.042
Reference: [16] Yu, W., Zhang, J.: Nonlinear $\ast $-Lie derivations on factor von Neumann algebras.Linear Algebra Appl., 437, 2012, 1979-1991, MR 2950465, 10.1016/j.laa.2012.05.032
Reference: [17] Zhang, F., Qi, X., Zhang, J.: Nonlinear $\ast $-Lie higher derivations on factor von Neumann algebras.Bull. Iranian Math. Soc., 42, 3, 2016, 659-678, MR 3518210
Reference: [18] Zhang, F., Zhang, J.: Nonlinear Lie derivations on factor von Neumann algebras.Acta Mathematica Sinica. (Chin. Ser), 54, 5, 2011, 791-802, MR 2918674
.

Files

Files Size Format View
ActaOstrav_26-2018-1_3.pdf 402.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo