Previous |  Up |  Next

Article

Title: Properads and homological differential operators related to surfaces (English)
Author: Peksová, Lada
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 54
Issue: 5
Year: 2018
Pages: 299-312
Summary lang: English
.
Category: math
.
Summary: We give a biased definition of a properad and an explicit example of a closed Frobenius properad. We recall the construction of the cobar complex and algebra over it. We give an equivalent description of the algebra in terms of Barannikov’s theory which is parallel to Barannikov’s theory of modular operads. We show that the algebra structure can be encoded as homological differential operator. Example of open Frobenius properad is mentioned along its specific properties. (English)
Keyword: properads
Keyword: Frobenius properad
Keyword: cobar complex
Keyword: Barannikov’s type theory
Keyword: homological differential operators
MSC: 18D50
idZBL: Zbl 06997357
idMR: MR3887356
DOI: 10.5817/AM2018-5-299
.
Date available: 2018-12-06T16:17:11Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147506
.
Reference: [1] Barannikov, S.: Modular operads and Batalin-Vilkovisky geometry.Internat. Math. Res. Notices (2007), Article ID rnm075, 31 pages. MR 2359547
Reference: [2] Doubek, M., Jurčo, B., Münster, K.: Modular operads and the quantum open-closed homotopy algebra.J. High Energy Phys. (2015), Article ID 158 (2015), arXiv:1308.3223 [math.AT]. MR 3464644
Reference: [3] Drummond-Cole, G.C., Terilla, J., Tradler, T.: Algebras over Cobar(coFrob).J. Homotopy Relat. Struct. 5 (1) (2010), 15–36, arXiv:0807.1241 [math.QA]. MR 2591885
Reference: [4] Getzler, E., Kapranov, M.M.: Modular operads.Compositio Math. 110 (1) (1998), 65–126, arXiv:dg-ga/9408003. MR 1601666, 10.1023/A:1000245600345
Reference: [5] Hackney, P., Robertson, M., Yau, D.: Infinity Properads and Infinity Wheeled Properads.Lecture Notes in Math., Springer International Publishing, 2015. MR 3408444
Reference: [6] Markl, M., Shnider, S., Stasheff, J.: Operads in algebra, topology and physics.Math. Surveys Monogr., vol. 96, Amer. Math. Soc., Providence, RI, 2002. Zbl 1017.18001, MR 1898414
Reference: [7] Merkulov, S., Vallette, B.: Deformation theory of representations of prop(erad)s I.J. Reine Angew. Math. 634 (2009), 51–106. MR 2560406
Reference: [8] Münster, K., Sachs, I.: Quantum open-closed homotopy algebra and string field theory.Comm. Math. Phys. 321 (3) (2013), 769–801, arXiv:1109.4101 [hep-th]. MR 3070036, 10.1007/s00220-012-1654-1
Reference: [9] Peksová, L.: Algebras over operads and properads.Master's thesis, Charles Univ. Prague, 2016, https://is.cuni.cz/studium/dipl_uc/index.php?id=40d829716c2891d12550d202e189ef4e&tid=1&do=xdownload&fid=120229648&did=148219&vdetailu=1.
Reference: [10] Vallette, B.: A Koszul duality for props.Trans. Amer. Math. Soc. 359 (10) (2007), 4865–4943, arXiv:math/0411542. MR 2320654, 10.1090/S0002-9947-07-04182-7
.

Files

Files Size Format View
ArchMathRetro_054-2018-5_5.pdf 572.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo