Previous |  Up |  Next

Article

Title: Bounds for the characteristic rank and cup-length of oriented Grassmann manifolds (English)
Author: Rusin, Tomáš
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 54
Issue: 5
Year: 2018
Pages: 313-329
Summary lang: English
.
Category: math
.
Summary: We estimate the characteristic rank of the canonical $k$–plane bundle over the oriented Grassmann manifold $\widetilde{G}_{n,k}$. We then use it to compute uniform upper bounds for the $\mathbb{Z}_2$–cup-length of $\widetilde{G}_{n,k}$ for $n$ belonging to certain intervals. (English)
Keyword: cup-length
Keyword: Grassmann manifold
Keyword: characteristic rank
Keyword: Stiefel-Whitney class
MSC: 55R25
MSC: 57R20
MSC: 57T15
idZBL: Zbl 06997358
idMR: MR3887357
DOI: 10.5817/AM2018-5-313
.
Date available: 2018-12-06T16:18:15Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147507
.
Reference: [1] Borel, A.: La cohomologie mod $2$ de certains espaces homogènes.Comment. Math. Helv. 27 (1953), 165–197. MR 0057541, 10.1007/BF02564561
Reference: [2] Fukaya, T.: Gröbner bases of oriented Grassmann manifolds.Homology, Homotopy Appl. 10 (2008), 195–209. MR 2475609, 10.4310/HHA.2008.v10.n2.a10
Reference: [3] Jaworowski, J.: An additive basis for the cohomology of real Grassmannians.Lecture Notes in Math., vol. 1474, Springer, Berlin, 1991, Algebraic topology Poznań 1989, 231–234. MR 1133904, 10.1007/BFb0084749
Reference: [4] Korbaš, J.: The cup-length of the oriented Grassmannians vs a new bound for zero-cobordant manifolds.Bull. Belg. Math. Soc. Simon Stevin 17 (2010), 69–81. MR 2656672
Reference: [5] Korbaš, J.: The characteristic rank and cup-length in oriented Grassmann manifolds.Osaka J. Math. 52 (2015), 1163–1172. MR 3426634
Reference: [6] Korbaš, J., Rusin, T.: A note on the $\mathbb{Z}_2$-cohomology algebra of oriented Grassmann manifolds.Rend. Circ. Mat. Palermo (2) 65 (2016), 507–517. MR 3571326, 10.1007/s12215-016-0249-7
Reference: [7] Korbaš, J., Rusin, T.: On the cohomology of oriented Grassmann manifolds.Homology, Homotopy, Appl. 18 (2) (2016), 71–84. MR 3518983, 10.4310/HHA.2016.v18.n2.a4
Reference: [8] Milnor, J., Stasheff, J.: Characteristic Classes.Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1974. Zbl 0298.57008, MR 0440554
Reference: [9] Naolekar, A.C., Thakur, A.S.: Note on the characteristic rank of vector bundles.Math. Slovaca 64 (2014), 1525–1540. MR 3298036, 10.2478/s12175-014-0289-4
Reference: [10] Petrović, Z.Z., Prvulović, B. I., Radovanović, M.: Characteristic rank of canonical vector bundles over oriented Grassmann manifolds $\widetilde{G}_{n,3}$.Topology Appl. 230 (2017), 114–121. MR 3702758
Reference: [11] Rusin, T.: A note on the characteristic rank of oriented Grassmann manifolds.Topology Appl. 216 (2017), 48–58. MR 3584122, 10.1016/j.topol.2016.11.009
Reference: [12] Stong, R.E.: Semicharacteristics of oriented Grassmannians.J. Pure Appl. Algebra 33 (1984), 97–103. MR 0750235, 10.1016/0022-4049(84)90029-X
.

Files

Files Size Format View
ArchMathRetro_054-2018-5_6.pdf 548.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo