Previous |  Up |  Next

Article

Title: Automorphism group of representation ring of the weak Hopf algebra $\widetilde {H_8}$ (English)
Author: Su, Dong
Author: Yang, Shilin
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 68
Issue: 4
Year: 2018
Pages: 1131-1148
Summary lang: English
.
Category: math
.
Summary: Let $H_8$ be the unique noncommutative and noncocommutative eight dimensional semi-simple Hopf algebra. We first construct a weak Hopf algebra $\widetilde {H_8}$ based on $H_8$, then we investigate the structure of the representation ring of $\widetilde {H_8}$. Finally, we prove that the automorphism group of $r(\widetilde {H_8})$ is just isomorphic to $D_6$, where $D_6$ is the dihedral group with order 12. (English)
Keyword: automorphism group
Keyword: representation ring
Keyword: weak Hopf algebra
MSC: 16W20
MSC: 19A22
idZBL: Zbl 07031704
idMR: MR3881903
DOI: 10.21136/CMJ.2018.0131-17
.
Date available: 2018-12-07T06:25:22Z
Last updated: 2021-01-04
Stable URL: http://hdl.handle.net/10338.dmlcz/147528
.
Reference: [1] Aizawa, N., Isaac, P. S.: Weak Hopf algebras corresponding to $U_q[sl_n]$.J. Math. Phys. 44 (2003), 5250-5267. Zbl 1063.16041, MR 2014859, 10.1063/1.1616999
Reference: [2] Alperin, R. C.: Homology of the group of automorphisms of $k[x, y]$.J. Pure Appl. Algebra 15 (1979), 109-115. Zbl 0415.13006, MR 0535179, 10.1016/0022-4049(79)90027-6
Reference: [3] Chen, H.-X.: The coalgebra automorphism group of Hopf algebra $k_q[x,x^{-1},y]$.J. Pure Appl. Algebra 217 (2013), 1870-1887. Zbl 1292.16021, MR 3053522, 10.1016/j.jpaa.2013.01.013
Reference: [4] Chen, H., Oystaeyen, F. Van, Zhang, Y.: The Green rings of Taft algebras.Proc. Am. Math. Soc. 142 (2014), 765-775. Zbl 1309.16021, MR 3148512, 10.1090/S0002-9939-2013-11823-X
Reference: [5] Cheng, D.: The structure of weak quantum groups corresponding to Sweedler algebra.JP J. Algebra Number Theory Appl. 16 (2010), 89-99. Zbl 1217.16028, MR 2662950
Reference: [6] Cheng, D., Li, F.: The structure of weak Hopf algebras corresponding to $U_q( sl_2)$.Commun. Algebra 37 (2009), 729-742. Zbl 1166.16018, MR 2503175, 10.1080/00927870802243499
Reference: [7] Dicks, W.: Automorphisms of the polynomial ring in two variables.Publ. Secc. Mat. Univ. Autòn. Barc. 27 (1983), 155-162. Zbl 0593.13005, MR 0763864, 10.5565/publmat_27183_04
Reference: [8] Drensky, V., Yu, J.-T.: Automorphisms of polynomial algebras and Dirichlet series.J. Algebra 321 (2009), 292-302. Zbl 1157.13015, MR 2469362, 10.1016/j.jalgebra.2008.08.026
Reference: [9] Han, J., Su, Y.: Automorphism groups of Witt algebras.Available at ArXiv 1502.0144v1 [math.QA].
Reference: [10] Jia, T., Zhao, R., Li, L.: Automorphism group of Green ring of Sweedler Hopf algebra.Front. Math. China 11 (2016), 921-932. Zbl 1372.16038, MR 3531037, 10.1007/s11464-016-0565-4
Reference: [11] Li, F.: Weak Hopf algebras and some new solutions of the quantum Yang-Baxter equation.J. Algebra 208 (1998), 72-100. Zbl 0916.16020, MR 1643979, 10.1006/jabr.1998.7491
Reference: [12] Li, L., Zhang, Y.: The Green rings of the generalized Taft Hopf algebras.Hopf Algebras and Tensor Categories Contemporary Mathematics 585, Proc. of the International Conf., University of Almería, Almería, Amer. Math. Soc., Providence N. Andruskiewitsch et al. (2013), 275-288. Zbl 1309.19001, MR 3077243, 10.1090/conm/585/11618
Reference: [13] Masuoka, A.: Semisimple Hopf algebras of dimension $6,8$.Isr. J. Math. 92 (1995), 361-373. Zbl 0839.16036, MR 1357764, 10.1007/BF02762089
Reference: [14] Montgomery, S.: Hopf Algebras and Their Actions on Rings.Conference on Hopf algebras and Their Actions on Rings, Chicago, 1992, CBMS Regional Conference Series in Mathematics 82, AMS, Providence (1993). Zbl 0793.16029, MR 1243637, 10.1090/cbms/082
Reference: [15] Ştefan, D.: Hopf algebras of low dimension.J. Algebra 211 (1999), 343-361. Zbl 0918.16031, MR 1656583, 10.1006/jabr.1998.7602
Reference: [16] Sweedler, M. E.: Hopf Algebras.Mathematics Lecture Note Series, W. A. Benjamin, New York (1969). Zbl 0194.32901, MR 0252485
Reference: [17] Kulk, W. van der: On polynomial rings in two variables.Nieuw Arch. Wiskd., III. Ser. 1 (1953), 33-41. Zbl 0050.26002, MR 0054574
Reference: [18] Yang, S.: Representations of simple pointed Hopf algebras.J. Algebra Appl. 3 (2004), 91-104. Zbl 1080.16043, MR 2047638, 10.1142/S021949880400071X
Reference: [19] Yang, S.: Weak Hopf algebras corresponding to Cartan matrices.J. Math. Phys. 46 (2005), 073502, 18 pages. Zbl 1110.16047, MR 2153558, 10.1063/1.1933063
Reference: [20] Yu, J.-T.: Recognizing automorphisms of polynomial algebras.Mat. Contemp. 14 (1998), 215-225. Zbl 0930.13016, MR 1663646
Reference: [21] Zhao, K.: Automophisms of the binary polynomial algebras on integer rings.Chinese Ann. Math. Ser. A 4 (1995), 448-494 Chinese.
.

Files

Files Size Format View
CzechMathJ_68-2018-4_19.pdf 308.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo