Title:
|
Recognition of characteristically simple group $A_5\times A_5$ by character degree graph and order (English) |
Author:
|
Khademi, Maryam |
Author:
|
Khosravi, Behrooz |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
68 |
Issue:
|
4 |
Year:
|
2018 |
Pages:
|
1149-1157 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
The character degree graph of a finite group $G$ is the graph whose vertices are the prime divisors of the irreducible character degrees of $G$ and two vertices $p$ and $q$ are joined by an edge if $pq$ divides some irreducible character degree of $G$. It is proved that some simple groups are uniquely determined by their orders and their character degree graphs. But since the character degree graphs of the characteristically simple groups are complete, there are very narrow class of characteristically simple groups which are characterizable by this method. \endgraf We prove that the characteristically simple group $A_5 \times A_5 $ is uniquely determined by its order and its character degree graph. We note that this is the first example of a non simple group which is determined by order and character degree graph. As a consequence of our result we conclude that $A_5\times A_5$ is uniquely determined by its complex group algebra. (English) |
Keyword:
|
character degree graph |
Keyword:
|
irreducible character |
Keyword:
|
characteristically simple group |
Keyword:
|
complex group algebra |
MSC:
|
20C15 |
MSC:
|
20D05 |
MSC:
|
20D08 |
MSC:
|
20D60 |
idZBL:
|
Zbl 07031705 |
idMR:
|
MR3881904 |
DOI:
|
10.21136/CMJ.2018.0134-17 |
. |
Date available:
|
2018-12-07T06:25:58Z |
Last updated:
|
2021-01-04 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/147529 |
. |
Reference:
|
[1] Brauer, R.: Representations of finite groups.Lectures on Modern Mathematics, Vol. I Wiley, New York (1963), 133-175. Zbl 0124.26504, MR 0178056 |
Reference:
|
[2] Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A., Wilson, R. A.: Atlas of Finite Groups. Maximal Subgroups and Ordinary Characters for Simple Groups.Clarendon Press, Oxford (1985). Zbl 0568.20001, MR 0827219 |
Reference:
|
[3] Dade, E. C.: Deux groupes finis distincts ayant la môme algêbre de groupe sur tout corps.Math. Z. 119 (1971), 345-348 French. Zbl 0201.03303, MR 0280610, 10.1007/BF01109886 |
Reference:
|
[4] Holt, D. F., Plesken, W.: Perfect Groups.Oxford Mathematical Monographs, Clarendon Press, Oxford (1989). Zbl 0691.20001, MR 1025760 |
Reference:
|
[5] Huppert, B.: Character Theory of Finite Groups.De Gruyter Expositions in Mathematics 25, Walter de Gruyter, Berlin (1998). Zbl 0932.20007, MR 1645304, 10.1515/9783110809237 |
Reference:
|
[6] Isaacs, I. M.: Character Theory of Finite Groups.Pure and Applied Mathematics 69, Academic Press, New York (1976). Zbl 0337.20005, MR 0460423, 10.1515/9783110809237 |
Reference:
|
[7] Isaacs, I. M.: Finite Group Theory.Graduate Studies in Mathematics 92, American Mathematical Society, Providence (2008). Zbl 1169.20001, MR 2426855, 10.1090/gsm/092 |
Reference:
|
[8] Jones, M. R.: Some inequalities for the multiplicator of finite group.Proc. Am. Math. Soc. 39 (1973), 450-456. Zbl 0242.20006, MR 0314975, 10.2307/2039572 |
Reference:
|
[9] Khosravi, B., Khosravi, B., Khosravi, B.: Recognition of $ PSL(2, p)$ by order and some information on its character degrees where $p$ is a prime.Monatsh. Math. 175 (2014), 277-282. Zbl 1304.20042, MR 3260870, 10.1007/s00605-013-0582-2 |
Reference:
|
[10] Khosravi, B., Khosravi, B., Khosravi, B.: Some extensions of $ PSL(2,p^2)$ are uniquely determined by their complex group algebras.Commun. Algebra 43 (2015), 3330-3341. Zbl 1335.20014, MR 3354093, 10.1080/00927872.2014.918989 |
Reference:
|
[11] Khosravi, B., Khosravi, B., Khosravi, B.: A new characterization for some extensions of $ PSL(2,q)$ for some $q$ by some character degrees.Proc. Indian Acad. Sci., Math. Sci. 126 (2016), 49-59. Zbl 1337.20008, MR 3470813, 10.1007/s12044-015-0257-0 |
Reference:
|
[12] Khosravi, B., Khosravi, B., Khosravi, B., Momen, Z.: Recognition by character degree graph and order of the simple groups of order less than 6000.Miskolc Math. Notes 15 (2014), 537-544. Zbl 1324.20004, MR 3302339, 10.18514/MMN.2014.777 |
Reference:
|
[13] Khosravi, B., Khosravi, B., Khosravi, B., Momen, Z.: A new characterization for the simple group $ PSL(2, p^2)$ by order and some character degrees.Czech. Math. J. 64 (2015), 271-280. Zbl 1363.20031, MR 3336038, 10.1007/s10587-015-0173-6 |
Reference:
|
[14] Khosravi, B., Khosravi, B., Khosravi, B., Momen, Z.: Recognition of the simple group $ PSL(2,p^2)$ by character degree graph and order.Monatsh. Math. 178 (2015), 251-257. Zbl 1325.20004, MR 3394425, 10.1007/s00605-014-0678-3 |
Reference:
|
[15] Khosravi, B., Khosravi, B., Khosravi, B., Momen, Z.: Recognition of some simple groups by character degree graph and order.Math. Rep., Buchar. 18 (68) (2016), 51-61. Zbl 1374.20006, MR 3474110 |
Reference:
|
[16] Kimmerle, W.: Group rings of finite simple groups.Resen. Inst. Mat. Estat. Univ. São Paulo 5 (2002), 261-278. Zbl 1047.20007, MR 2015338 |
Reference:
|
[17] Lewis, M. L.: An overview of graphs associated with character degrees and conjugacy class sizes in finite groups.Rocky Mt. J. Math. 38 (2008), 175-211. Zbl 1166.20006, MR 2397031, 10.1216/RMJ-2008-38-1-175 |
Reference:
|
[18] Manz, O., Staszewski, R., Willems, W.: On the number of components of a graph related to character degrees.Proc. Am. Math. Soc. 103 (1988), 31-37. Zbl 0645.20005, MR 0938639, 10.2307/2047522 |
Reference:
|
[19] Nagl, M.: Über das Isomorphieproblem von Gruppenalgebren endlicher einfacher Gruppen. Diplomarbeit.Universität Stuttgart (2008), German. |
Reference:
|
[20] Nagl, M.: Charakterisierung der Symmetrischen Gruppen durch ihre komplexe Gruppenalgebra.Stuttgarter Mathematische Berichte 2011 Universität Stuttgart. Fachbereich Mathematik, Stuttgart (2011), 18, Preprint ID 2011-007. Avaible at http://www.mathematik.uni-stuttgart.de/preprints/downloads/2011/2011-007.pdf German. |
Reference:
|
[21] Tong-Viet, H. P.: Symmetric groups are determined by their character degrees.J. Algebra 334 (2011), 275-284. Zbl 1246.20007, MR 2787664, 10.1016/j.jalgebra.2010.11.018 |
Reference:
|
[22] Tong-Viet, H. P.: Alternating and sporadic simple groups are determined by their character degrees.Algebr. Represent. Theory 15 (2012), 379-389. Zbl 1252.20005, MR 2892513, 10.1007/s10468-010-9247-1 |
Reference:
|
[23] Tong-Viet, H. P.: Simple classical groups of Lie type are determined by their character degrees.J. Algebra 357 (2012), 61-68. Zbl 1259.20008, MR 2905242, 10.1016/j.jalgebra.2012.02.011 |
Reference:
|
[24] Tong-Viet, H. P.: Simple exceptional groups of Lie type are determined by their character degrees.Monatsh. Math. 166 (2012), 559-577. Zbl 1255.20006, MR 2925155, 10.1007/s00605-011-0301-9 |
Reference:
|
[25] White, D. L.: Degree graphs of simple groups.Rocky Mt. J. Math. 39 (2009), 1713-1739. Zbl 1180.20008, MR 2546661, 10.1216/RMJ-2009-39-5-1713 |
Reference:
|
[26] Xu, H., Chen, G., Yan, Y.: A new characterization of simple $K_3$-groups by their orders and large degrees of their irreducible characters.Commun. Algebra 42 (2014), 5374-5380. Zbl 1297.20012, MR 3223645, 10.1080/00927872.2013.842242 |
Reference:
|
[27] Xu, H., Yan, Y., Chen, G.: A new characterization of Mathieu-groups by the order and one irreducible character degree.J. Inequal. Appl. Paper No. 209 (2013), 6 pages \99999DOI99999 10.1186/1029-242X-2013-209 \goodbreak. Zbl 1284.20013, MR 3065319 |
. |