Previous |  Up |  Next

Article

Title: Efficient measurement of higher-order statistics of stochastic processes (English)
Author: Magiera, Wladyslaw
Author: Libal, Urszula
Author: Wielgus, Agnieszka
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 54
Issue: 5
Year: 2018
Pages: 865-887
Summary lang: English
.
Category: math
.
Summary: This paper is devoted to analysis of block multi-indexed higher-order covariance matrices, which can be used for the least-squares estimation problem. The formulation of linear and nonlinear least squares estimation problems is proposed, showing that their statements and solutions lead to generalized `normal equations', employing covariance matrices of the underlying processes. Then, we provide a class of efficient algorithms to estimate higher-order statistics (generalized multi-indexed covariance matrices), which are necessary taking in mind practical aspects of the nonlinear treatment of the least-squares estimation problem. The algorithms are examined for different higher-order and non-Gaussian processes (time-series) and an impact of signal properties on covariance matrices is analysed. (English)
Keyword: covariance matrix
Keyword: higher-order statistics
Keyword: adaptive
Keyword: nonlinear
MSC: 15B05
MSC: 15B51
MSC: 60G10
MSC: 60G15
MSC: 93E24
idZBL: Zbl 07031749
idMR: MR3893125
DOI: 10.14736/kyb-2018-5-0865
.
Date available: 2018-12-10T10:09:45Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147531
.
Reference: [1] Dewilde, P.: Stochastic modelling with orthogonal filters..In: Outils et modeles mathematiques pour l'automatique, l'analyse de systemes et le traitement du signal, CNRS (ed.), Paris 1982, pp. 331-398. MR 0782526
Reference: [2] Lee, D. T. L., Morf, M., Friedlander, B.: Recursive least-squares ladder estimation algorithms..IEEE Trans. Circuit Systems CAS 28 (1981), 467-481. MR 0629997, 10.1109/tcs.1981.1085020
Reference: [3] Jurečková, J.: Regression quantiles and trimmed least squares estimator under a general design..Kybernetika 20 (1984), 5, 345-357. Zbl 0561.62027, MR 0776325
Reference: [4] Levinson, N.: The Wiener RMS error criterion in filter design and prediction..J. Math. Physics 25 (1947), 261-278. MR 0019257, 10.1002/sapm1946251261
Reference: [5] Mandl, P., Duncan, T. E., Pasik-Duncan, B.: On the consistency of a least squares identification procedure..Kybernetika 24 (1988), 5, 340-346. MR 0970211
Reference: [6] Mendel, J. M.: Tutorial on higher-order statistics (spectra) in signal processing and system theory: theoretical results and some applications..Proc. IEEE 79 (1991), 3, 278-305. 10.1109/5.75086
Reference: [7] Pázman, A.: Probability distribution of the multivariate nonlinear least squares estimates..Kybernetika 20 (1984), 3, 209-230. MR 0763647
Reference: [8] Pronzato, L., Pázman, A.: Second-order approximation of the entropy in nonlinear least-squares estimation..Kybernetika 30 (1994), 2, 187-198. MR 1283494
Reference: [9] Schur, I.: Methods in 0perator Theory and Signal Processing..Operator Theory: Advances and Applications 18, Springer-Verlag 1086. 10.1007/978-3-0348-5483-2
Reference: [10] Stellakis, H. M., Manolakos, E. M.: Adaptive computation of higher order moments and its systolic realization..Int. J. Adaptive Control Signal Process. 10 (1996), 283-302. 10.1002/(sici)1099-1115(199603)10:2/3<283::aid-acs351>3.3.co;2-2
Reference: [11] Wiener, N.: Nonlinear Problems in Random Theory..MIT Press, 1958. MR 0100912
Reference: [12] Zarzycki, J.: Multidimensional nonlinear Schur parametrization of non-gaussian stochastic signals - Part one: Statement of the problem..MDSSP J. 15 (2004), 3, 217-241. MR 2075150, 10.1023/b:mult.0000028007.05748.48
.

Files

Files Size Format View
Kybernetika_54-2018-5_1.pdf 2.245Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo