Title:
|
Efficient measurement of higher-order statistics of stochastic processes (English) |
Author:
|
Magiera, Wladyslaw |
Author:
|
Libal, Urszula |
Author:
|
Wielgus, Agnieszka |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 (print) |
ISSN:
|
1805-949X (online) |
Volume:
|
54 |
Issue:
|
5 |
Year:
|
2018 |
Pages:
|
865-887 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
This paper is devoted to analysis of block multi-indexed higher-order covariance matrices, which can be used for the least-squares estimation problem. The formulation of linear and nonlinear least squares estimation problems is proposed, showing that their statements and solutions lead to generalized `normal equations', employing covariance matrices of the underlying processes. Then, we provide a class of efficient algorithms to estimate higher-order statistics (generalized multi-indexed covariance matrices), which are necessary taking in mind practical aspects of the nonlinear treatment of the least-squares estimation problem. The algorithms are examined for different higher-order and non-Gaussian processes (time-series) and an impact of signal properties on covariance matrices is analysed. (English) |
Keyword:
|
covariance matrix |
Keyword:
|
higher-order statistics |
Keyword:
|
adaptive |
Keyword:
|
nonlinear |
MSC:
|
15B05 |
MSC:
|
15B51 |
MSC:
|
60G10 |
MSC:
|
60G15 |
MSC:
|
93E24 |
idZBL:
|
Zbl 07031749 |
idMR:
|
MR3893125 |
DOI:
|
10.14736/kyb-2018-5-0865 |
. |
Date available:
|
2018-12-10T10:09:45Z |
Last updated:
|
2020-01-05 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/147531 |
. |
Reference:
|
[1] Dewilde, P.: Stochastic modelling with orthogonal filters..In: Outils et modeles mathematiques pour l'automatique, l'analyse de systemes et le traitement du signal, CNRS (ed.), Paris 1982, pp. 331-398. MR 0782526 |
Reference:
|
[2] Lee, D. T. L., Morf, M., Friedlander, B.: Recursive least-squares ladder estimation algorithms..IEEE Trans. Circuit Systems CAS 28 (1981), 467-481. MR 0629997, 10.1109/tcs.1981.1085020 |
Reference:
|
[3] Jurečková, J.: Regression quantiles and trimmed least squares estimator under a general design..Kybernetika 20 (1984), 5, 345-357. Zbl 0561.62027, MR 0776325 |
Reference:
|
[4] Levinson, N.: The Wiener RMS error criterion in filter design and prediction..J. Math. Physics 25 (1947), 261-278. MR 0019257, 10.1002/sapm1946251261 |
Reference:
|
[5] Mandl, P., Duncan, T. E., Pasik-Duncan, B.: On the consistency of a least squares identification procedure..Kybernetika 24 (1988), 5, 340-346. MR 0970211 |
Reference:
|
[6] Mendel, J. M.: Tutorial on higher-order statistics (spectra) in signal processing and system theory: theoretical results and some applications..Proc. IEEE 79 (1991), 3, 278-305. 10.1109/5.75086 |
Reference:
|
[7] Pázman, A.: Probability distribution of the multivariate nonlinear least squares estimates..Kybernetika 20 (1984), 3, 209-230. MR 0763647 |
Reference:
|
[8] Pronzato, L., Pázman, A.: Second-order approximation of the entropy in nonlinear least-squares estimation..Kybernetika 30 (1994), 2, 187-198. MR 1283494 |
Reference:
|
[9] Schur, I.: Methods in 0perator Theory and Signal Processing..Operator Theory: Advances and Applications 18, Springer-Verlag 1086. 10.1007/978-3-0348-5483-2 |
Reference:
|
[10] Stellakis, H. M., Manolakos, E. M.: Adaptive computation of higher order moments and its systolic realization..Int. J. Adaptive Control Signal Process. 10 (1996), 283-302. 10.1002/(sici)1099-1115(199603)10:2/3<283::aid-acs351>3.3.co;2-2 |
Reference:
|
[11] Wiener, N.: Nonlinear Problems in Random Theory..MIT Press, 1958. MR 0100912 |
Reference:
|
[12] Zarzycki, J.: Multidimensional nonlinear Schur parametrization of non-gaussian stochastic signals - Part one: Statement of the problem..MDSSP J. 15 (2004), 3, 217-241. MR 2075150, 10.1023/b:mult.0000028007.05748.48 |
. |