Previous |  Up |  Next

Article

Title: A note on weak solutions to stochastic differential equations (English)
Author: Ondreját, Martin
Author: Seidler, Jan
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 54
Issue: 5
Year: 2018
Pages: 888-907
Summary lang: English
.
Category: math
.
Summary: We revisit the proof of existence of weak solutions of stochastic differential equations with continuous coeficients. In standard proofs, the coefficients are approximated by more regular ones and it is necessary to prove that: i) the laws of solutions of approximating equations form a tight set of measures on the paths space, ii) its cluster points are laws of solutions of the limit equation. We aim at showing that both steps may be done in a particularly simple and elementary manner. (English)
Keyword: stochastic differential equations
Keyword: continuous coefficients
Keyword: weak solutions
MSC: 60H10
idZBL: Zbl 07031750
idMR: MR3893126
DOI: 10.14736/kyb-2018-5-0888
.
Date available: 2018-12-10T10:11:02Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147533
.
Reference: [1] Bensoussan, A.: Stochastic Navier-Stokes equations..Acta Appl. Math. 38 (1995), 267-304. MR 1326637, 10.1007/bf00996149
Reference: [2] Billingsley, P.: Convergence of Probability Measures. Second edition..Wiley, New York 1999. MR 1700749, 10.1002/9780470316962
Reference: [3] Bogachev, V. I.: Measure Theory, Vol. II..Springer, Berlin 2007. MR 2267655, 10.1007/978-3-540-34514-5
Reference: [4] Brzeźniak, Z., Ondreját, M., Seidler, J.: Invariant measures for stochastic nonlinear beam and wave equations..J. Differential Equations 260 (2016), 4157-4179. MR 3437583, 10.1016/j.jde.2015.11.007
Reference: [5] Cherny, A.: Some particular problems of martingale theory..In: From Stochastic Calculus to Mathematical Finance, Springer, Berlin 2006, pp. 109-124. MR 2233537, 10.1007/978-3-540-30788-4\_6
Reference: [6] Debussche, A., Glatt-Holtz, N., Temam, R.: Local martingale and pathwise solutions for an abstract fluids model..Phys. D 240 (2011), 1123-1144. MR 2812364, 10.1016/j.physd.2011.03.009
Reference: [7] Dudley, R. M.: Real Analysis and Probability..Cambridge University Press, Cambridge 2002. Zbl 1023.60001, MR 1932358, 10.1017/cbo9780511755347
Reference: [8] Hofmanová, M., Seidler, J.: On weak solutions of stochastic differential equations..Stoch. Anal. Appl. 30 (2012), 100-121. MR 2870529, 10.1080/07362994.2012.628916
Reference: [9] Hofmanová, M., Seidler, J.: On weak solutions of stochastic differential equations II..Stoch. Anal. Appl. 31 (2013), 663-670. MR 3175790, 10.1080/07362994.2013.799025
Reference: [10] Gyöngy, I., Krylov, N.: Existence of strong solutions for Itô's stochastic equations via approximations..Probab. Theory Related Fields 105 (1996), 143-158. MR 1392450, 10.1007/bf01203833
Reference: [11] Ikeda, N., Watanabe, S.: Stochastic Differential Equations and Diffusion Processes..North-Holland, Amsterdam 1981. MR 0637061, 10.1016/s0924-6509(08)70226-5
Reference: [12] Karatzas, I., Shreve, S. E.: Brownian Motion and Stochastic Calculus..Springer, New York 1988. MR 0917065, 10.1007/978-1-4684-0302-2
Reference: [13] Kurtz, T. G., Protter, P. E.: Weak convergence of stochastic integrals and differential equations..In: Probabilistic Models for Nonlinear Partial Differential Equations, Lecture Notes in Math. 1627, Springer, Berlin 1996, pp. 1-41. MR 1431298, 10.1007/bfb0093176
Reference: [14] Skorokhod, A. V.: On existence and uniqueness of solutions to stochastic differential equations (in Russian)..Sibirsk. Mat. Ž. 2 (1961), 129-137. MR 0132595
Reference: [15] Strock, D. W., Varadhan, S. R. S.: Multidimensional Diffusion Processes..Springer, Berlin 1979. MR 0532498
Reference: [16] Taheri, A.: Function Spaces and Partial Differential Equations, Vol. 1: Classical Analysis..Oxford University Press, Oxford 2015. MR 3410096, 10.1093/acprof:oso/9780198733133.001.0001
Reference: [17] Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators..North-Holland, Amsterdam 1978. MR 0503903, 10.1016/s0924-6509(09)x7004-2
.

Files

Files Size Format View
Kybernetika_54-2018-5_2.pdf 534.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo