[1] Apostol T. M.: 
Introduction to Analytic Number Theory. Undergraduate Texts in Mathematics, Springer, New York, 1976. 
MR 0434929[2] Artin E., Tate J.: 
Class Field Theory. Advanced Book Classics, Addison-Wesley Publishing Company, Advanced Book Program, Redwood City, 1990. 
MR 1043169[6] Brown M.: A countable connected Hausdorff space. Bull. Amer. Math. Soc. 59 (1953), Abstract 423, 367.
[8] Dirichlet P. G. L.: 
Lectures on Number Theory. History of Mathematics, 16, American Mathematical Society, Providence, London, 1999. 
DOI 10.1090/hmath/016 | 
MR 1710911[9] Engelking R.: 
General Topology. Sigma Series in Pure Mathematics, 6, Heldermann Verlag, Berlin, 1989. 
MR 1039321 | 
Zbl 0684.54001[10] Engelking R.: 
Theory of Dimensions Finite and Infinite. Sigma Series in Pure Mathematics, 10, Heldermann Verlag, Lemgo, 1995. 
MR 1363947 | 
Zbl 0872.54002[12] Gauss C. F.: 
Disquisitiones Arithmeticae. Springer, New York, 1986. 
Zbl 1167.11001[14] Golomb S. W.: 
Arithmetica topologica. General Topology and Its Relations to Modern Analysis and Algebra, Proc. Symp., Prague, 1961, Academic Press, New York; Publ. House Czech. Acad. Sci., Praha (1962), 179–186. 
MR 0154249[15] Jones G. A., Jones J. M.: 
Elementary Number Theory. Springer Undergraduate Mathematics Series, Springer, London, 1998. 
MR 1610533[16] Knaster B., Kuratowski K.: 
Sur les ensembles connexes. Fund. Math. 2 (1921), no. 1, 206–256 (French). 
DOI 10.4064/fm-2-1-206-255[17] Knopfmacher J., Porubský Š.: 
Topologies related to arithmetical properties of integral domains. Exposition Math. 15 (1997), no. 2, 131–148. 
MR 1458761[18] Steen L. A., Seebach J. A., Jr.: 
Counterexamples in Topology. Dover Publications, Mineola, 1995. 
MR 1382863 | 
Zbl 0386.54001[20] Sury B.: 
Frobenius and his density theorem for primes. Resonance 8 (2003), no. 12, 33–41. 
DOI 10.1007/BF02839049[21] Szczuka P.: 
The connectedness of arithmetic progressions in Furstenberg's, Golomb's, and Kirch's topologies. Demonstratio Math. 43 (2010), no. 4, 899–909. 
MR 2761648[22] Szczuka P.: 
The Darboux property for polynomials in Golomb's and Kirch's topologies. Demonstratio Math. 46 (2013), no. 2, 429–435. 
MR 3098036