[1] Baumgartner J. E.: 
Applications of the proper forcing axiom. Handbook of Set-theoretic Topology, North-Holland Publishing, Amsterdam, 1984, pages 913–959. 
MR 0776640[2] Blass A., Shelah S.: 
There may be simple $P_{\aleph_1}$- and $P_{\aleph_2}$-points and the Rudin-Keisler ordering may be downward directed. Ann. Pure Appl. Logic 33 (1987), no. 3, 213–243. 
DOI 10.1016/0168-0072(87)90082-0 | 
MR 0879489[3] van Douwen E. K., Kunen K., van Mill J.: 
There can be $C^*$-embedded dense proper subspaces in $\beta\omega-\omega$. Proc. Amer. Math. Soc. 105 (1989), no. 2, 462–470. 
MR 0977925[5] Dow A., Shelah S.: 
More on tie-points and homeomorphism in $\mathbb N^\ast$. Fund. Math. 203 (2009), no. 3, 191–210. 
DOI 10.4064/fm203-3-1 | 
MR 2506596[6] Dow A., Shelah S.: 
An Efimov space from Martin's axiom. Houston J. Math. 39 (2013), no. 4, 1423–1435. 
MR 3164725[7] Drewnowski L., Roberts J. W.: 
On the primariness of the Banach space $l_{\infty}/C_0$. Proc. Amer. Math. Soc. 112 (1991), no. 4, 949–957. 
MR 1004417[8] Farah I.: 
Analytic quotients: theory of liftings for quotients over analytic ideals on the integers. Mem. Amer. Math. Soc. 148 (2000), no. 702, 177 pages. 
MR 1711328 | 
Zbl 0966.03045[13] Just W.: 
Nowhere dense $P$-subsets of $\omega$. Proc. Amer. Math. Soc. 106 (1989), no. 4, 1145–1146. 
MR 0976360[14] Katětov M.: 
A theorem on mappings. Comment. Math. Univ. Carolinae 8 (1967), 431–433. 
MR 0229228[16] Koszmider P.: 
Forcing minimal extensions of Boolean algebras. Trans. Amer. Math. Soc. 351 (1999), no. 8, 3073–3117. 
MR 1467471 | 
Zbl 0922.03071[17] Kunen K.: 
Set Theory. An Introduction to Independence Proofs. Studies in Logic and the Foundations of Mathematics, 102, North-Holland Publishing, Amsterdam, 1980. 
MR 0597342 | 
Zbl 0534.03026[18] Kunen K., Vaughan J. E., eds.: 
Handbook of Set-theoretic Topology. North-Holland Publishing, Amsterdam, 1984. 
MR 0776619[20] Pearl E., ed.: 
Open Problems in Topology. II. Elsevier, Amsterdam, 2007. 
MR 2367385[21] Rabus M.: 
On strongly discrete subsets of $\omega^\ast$. Proc. Amer. Math. Soc. 118 (1993), no. 4, 1291–1300. 
MR 1181172[22] Rabus M.: 
An $\omega_2$-minimal Boolean algebra. Trans. Amer. Math. Soc. 348 (1996), no. 8, 3235–3244. 
MR 1357881[23] Šapirovskiĭ B. È.: 
The imbedding of extremally disconnected spaces in bicompacta. $b$-points and weight of pointwise normal spaces. Dokl. Akad. Nauk SSSR 223 (1975), no. 5, 1083–1086 (Russian). 
MR 0394609