Previous |  Up |  Next

Article

Title: Parallel solution of elasticity problems using overlapping aggregations (English)
Author: Kohut, Roman
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 63
Issue: 6
Year: 2018
Pages: 603-628
Summary lang: English
.
Category: math
.
Summary: The finite element (FE) solution of geotechnical elasticity problems leads to the solution of a large system of linear equations. For solving the system, we use the preconditioned conjugate gradient (PCG) method with two-level additive Schwarz preconditioner. The preconditioning is realised in parallel. A coarse space is usually constructed using an aggregation technique. If the finite element spaces for coarse and fine problems on structural grids are fully compatible, relations between elements of matrices of the coarse and fine problems can be derived. By generalization of these formulae, we obtain an overlapping aggregation technique for the construction of a coarse space with smoothed basis functions. The numerical tests are presented at the end of the paper. (English)
Keyword: conjugate gradients
Keyword: aggregation
Keyword: Schwarz method
Keyword: finite element method
Keyword: geotechnical application
Keyword: elasticity
MSC: 65F08
MSC: 74S05
idZBL: Zbl 07031679
idMR: MR3893002
DOI: 10.21136/AM.2018.0142-17
.
Date available: 2019-01-03T09:09:21Z
Last updated: 2021-01-04
Stable URL: http://hdl.handle.net/10338.dmlcz/147560
.
Reference: [1] Andersson, J. C.: Rock Mass Response to Coupled Mechanical Thermal Loading: "Aspö Pillar Stability Experiment. Doctoral Thesis.Byggvetenskap, Stockholm (2007), Available at http://urn.kb.se/resolve?urn=urn\%3Anbn\%3Ase\%3Akth\%3Adiva-4287\kern0pt.
Reference: [2] Blaheta, R.: Displacement decomposition---incomplete factorization preconditioning techniques for linear elasticity problems.Numer. Linear Algebra Appl. 1 (1994), 107-128. Zbl 0837.65021, MR 1277796, 10.1002/nla.1680010203
Reference: [3] Blaheta, R.: Algebraic multilevel methods with aggregations: An overview.Large-Scale Scientific Computing Lecture Notes in Computer Science 3743, Springer, Berlin I. Lirkov et al. (2006), 3-14. Zbl 1142.65337, MR 2246812, 10.1007/11666806_1
Reference: [4] Blaheta, R., Byczanski, P., Jakl, O., Starý, J.: Space decomposition preconditioners and their application in geomechanics.Math. Comput. Simul. 61 (2003), 409-420. Zbl 1013.65038, MR 1984141, 10.1016/S0378-4754(02)00096-4
Reference: [5] Blaheta, R., Jakl, O., Kohut, R., Starý, J.: Iterative displacement decomposition solvers for HPC in geomechanics.Large-Scale Scientific Computations of Engineering and Environmental Problems II Notes on Numerical Fluid Mechanics 73, Vieweg, Braunschweig M. Griebel et al. (2000), 347-356. Zbl 0995.74066
Reference: [6] Blaheta, R., Kohut, R., Kolcun, A., Souček, K., Staš, L., Vavro, L.: Digital image based numerical micromechanics of geocomposites with application to chemical grouting.Int. J. Rock Mech. Min. Sci 77 (2015), 77-88. 10.1016/j.ijrmms.2015.03.012
Reference: [7] Brandt, A., McCormick, S. F., Ruge, J. W.: Algebraic multigrid (AMG) for sparse matrix equations.Sparsity and Its Applications D. J. Evans Cambridge University Press, Cambridge (1985), 257-284. Zbl 0548.65014, MR 0803712
Reference: [8] Brezina, M., Manteuffel, T., McCormick, S., Ruge, J., Sanders, G.: Towards adaptive smoothed aggregation ($\alpha$SA) for nonsymmetric problems.SIAM J. Sci. Comput. 32 (2010), 14-39. Zbl 1210.65075, MR 2599765, 10.1137/080727336
Reference: [9] Hackbusch, W.: Multi-grid Methods and Applications.Springer Series in Computational Mathematics 4, Springer, Berlin (1985). Zbl 0595.65106, MR 0814495, 10.1007/978-3-662-02427-0
Reference: [10] Jenkins, E. W., Kees, C. E., Kelley, C. T., Miller, C. T.: An aggregation-based domain decomposition preconditioner for groundwater flow.SIAM J. Sci. Comput. 23 (2001), 430-441. Zbl 1036.65109, MR 1861258, 10.1137/S1064827500372274
Reference: [11] Kolcun, A.: Conform decomposition of cube.SSCG'94: Spring School on Computer Graphics Comenius University, Bratislava (1994), 185-191.
Reference: [12] Mandel, J.: Hybrid domain decomposition with unstructured subdomains.Domain Decomposition Methods in Science and Engineering A. Quarteroni et al. Contemporary Mathematics 157, American Mathematical Society, Providence (1994), 103-112. Zbl 0796.65127, MR 1262611, 10.1090/conm/157/01411
Reference: [13] Smith, B. F., Bjørstad, P. E., Groop, W. D.: Domain Decomposition. Parallel Multilevel Methods for Elliptic Partial Differential Equations.Cambridge University Press, Cambridge (1996). Zbl 0857.65126, MR 1410757
Reference: [14] Trottenberg, U., Oosterle, C. W., Schüller, A.: Multigrid.Academic Press, New York (2001). Zbl 0976.65106, MR 1807961
Reference: [15] Vaněk, P., Mandel, J., Brezina, M.: Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems.Computing 56 (1996), 179-196. Zbl 0851.65087, MR 1393006, 10.1007/BF02238511
Reference: [16] Zienkiewicz, O. C.: The Finite Element Method.McGraw-Hill, London (1977). Zbl 0435.73072
.

Files

Files Size Format View
AplMat_63-2018-6_2.pdf 684.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo