Previous |  Up |  Next

Article

Title: Littlewood-Paley characterization of Hölder-Zygmund spaces on stratified Lie groups (English)
Author: Hu, Guorong
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 69
Issue: 1
Year: 2019
Pages: 131-159
Summary lang: English
.
Category: math
.
Summary: We give a characterization of the Hölder-Zygmund spaces $\mathcal {C}^{\sigma }(G)$ ($0< \sigma <\infty $) on a stratified Lie group $G$ in terms of Littlewood-Paley type decompositions, in analogy to the well-known characterization of the Euclidean case. Such decompositions are defined via the spectral measure of a sub-Laplacian on $G$, in place of the Fourier transform in the classical setting. Our approach mainly relies on almost orthogonality estimates and can be used to study other function spaces such as Besov and Triebel-Lizorkin spaces on stratified Lie groups. (English)
Keyword: stratified Lie group
Keyword: Hölder-Zygmund space
Keyword: Littlewood-Paley decomposition
MSC: 42B25
MSC: 42B35
MSC: 43A80
idZBL: Zbl 07088775
idMR: MR3923580
DOI: 10.21136/CMJ.2018.0197-17
.
Date available: 2019-03-08T14:58:22Z
Last updated: 2021-04-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147623
.
Reference: [1] Bonfiglioli, A., Lanconelli, E., Uguzzoni, F.: Stratified Lie Groups and Potential Theory for Their Sub-Laplacians.Springer Monographs in Mathematics, Springer, Berlin (2007). Zbl 1128.43001, MR 2363343, 10.1007/978-3-540-71897-0
Reference: [2] Christ, M.: $L^{p}$ bounds for spectral multipliers on nilpotent groups.Trans. Am. Math. Soc. 328 (1991), 73-81. Zbl 0739.42010, MR 1104196, 10.2307/2001877
Reference: [3] Folland, G. B.: Subelliptic estimates and function spaces on nilpotent Lie groups.Ark. Mat. 13 (1975), 161-207. Zbl 0312.35026, MR 0494315, 10.1007/BF02386204
Reference: [4] Folland, G. B.: Lipschitz classes and Poisson integrals on stratified groups.Stud. Math. 66 (1979), 37-55. Zbl 0439.43005, MR 0562450, 10.4064/sm-66-1-37-55
Reference: [5] Folland, G. B., Stein, E. M.: Hardy Spaces on Homogeneous Groups.Mathematical Notes 28, Princeton University Press, Princeton (1982). Zbl 0508.42025, MR 0657581
Reference: [6] Führ, H., Mayeli, A.: Homogeneous Besov spaces on stratified Lie groups and their wavelet characterization.J. Funct. Spaces Appl. 2012 (2012), Article ID. 523586, 41 pages. Zbl 1255.46016, MR 2923803, 10.1155/2012/523586
Reference: [7] Furioli, G., Melzi, C., Veneruso, A.: Littlewood-Paley decompositions and Besov spaces on Lie groups of polynomial growth.Math. Nachr. 279 (2006), 1028-1040. Zbl 1101.22006, MR 2242964, 10.1002/mana.200510409
Reference: [8] Giulini, S.: Approximation and Besov spaces on stratified groups.Proc. Am. Math. Soc. 96 (1986), 569-578. Zbl 0605.41013, MR 0826483, 10.2307/2046306
Reference: [9] Grafakos, L.: Modern Fourier Analysis.Graduate Texts in Mathematics 250, Springer, New York (2009). Zbl 1158.42001, MR 2463316, 10.1007/978-0-387-09434-2
Reference: [10] Hu, G.: Maximal Hardy spaces associated to nonnegative self-adjoint operators.Bull. Aust. Math. Soc. 91 (2015), 286-302. Zbl 1316.42024, MR 3314148, 10.1017/S0004972714001105
Reference: [11] Hulanicki, A.: A functional calculus for Rockland operators on nilpotent Lie groups.Stud. Math. 78 (1984), 253-266. Zbl 0595.43007, MR 0782662, 10.4064/sm-78-3-253-266
Reference: [12] Kerkyacharian, G., Petrushev, P.: Heat kernel based decomposition of spaces of distributions in the framework of Dirichlet spaces.Trans. Am. Math. Soc. 367 (2015), 121-189. Zbl 1321.58017, MR 3271256, 10.1090/S0002-9947-2014-05993-X
Reference: [13] Rudin, W.: Functional Analysis.International Series in Pure and Applied Mathematics, McGraw-Hill, New York (1991). Zbl 0867.46001, MR 1157815
Reference: [14] Saka, K.: Besov spaces and Sobolev spaces on a nilpotent Lie group.Tohoku Math. J., II. Ser. 31 (1979), 383-437. Zbl 0429.43004, MR 0558675, 10.2748/tmj/1178229728
Reference: [15] Triebel, H.: Theory of Function Spaces.Monographs in Mathematics 78, Birkhäuser, Basel (1983). Zbl 0546.46027, MR 0781540, 10.1007/978-3-0346-0416-1
Reference: [16] Varopoulos, N., Saloff-Coste, L., Coulhon, T.: Analysis and Geometry on Groups.Cambridge Tracts in Mathematics 100, Cambridge University Press, Cambridge (1992). Zbl 1179.22009, MR 1218884, 10.1017/CBO9780511662485
.

Files

Files Size Format View
CzechMathJ_69-2019-1_12.pdf 409.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo