Title:
|
Littlewood-Paley characterization of Hölder-Zygmund spaces on stratified Lie groups (English) |
Author:
|
Hu, Guorong |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
69 |
Issue:
|
1 |
Year:
|
2019 |
Pages:
|
131-159 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We give a characterization of the Hölder-Zygmund spaces $\mathcal {C}^{\sigma }(G)$ ($0< \sigma <\infty $) on a stratified Lie group $G$ in terms of Littlewood-Paley type decompositions, in analogy to the well-known characterization of the Euclidean case. Such decompositions are defined via the spectral measure of a sub-Laplacian on $G$, in place of the Fourier transform in the classical setting. Our approach mainly relies on almost orthogonality estimates and can be used to study other function spaces such as Besov and Triebel-Lizorkin spaces on stratified Lie groups. (English) |
Keyword:
|
stratified Lie group |
Keyword:
|
Hölder-Zygmund space |
Keyword:
|
Littlewood-Paley decomposition |
MSC:
|
42B25 |
MSC:
|
42B35 |
MSC:
|
43A80 |
idZBL:
|
Zbl 07088775 |
idMR:
|
MR3923580 |
DOI:
|
10.21136/CMJ.2018.0197-17 |
. |
Date available:
|
2019-03-08T14:58:22Z |
Last updated:
|
2021-04-05 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/147623 |
. |
Reference:
|
[1] Bonfiglioli, A., Lanconelli, E., Uguzzoni, F.: Stratified Lie Groups and Potential Theory for Their Sub-Laplacians.Springer Monographs in Mathematics, Springer, Berlin (2007). Zbl 1128.43001, MR 2363343, 10.1007/978-3-540-71897-0 |
Reference:
|
[2] Christ, M.: $L^{p}$ bounds for spectral multipliers on nilpotent groups.Trans. Am. Math. Soc. 328 (1991), 73-81. Zbl 0739.42010, MR 1104196, 10.2307/2001877 |
Reference:
|
[3] Folland, G. B.: Subelliptic estimates and function spaces on nilpotent Lie groups.Ark. Mat. 13 (1975), 161-207. Zbl 0312.35026, MR 0494315, 10.1007/BF02386204 |
Reference:
|
[4] Folland, G. B.: Lipschitz classes and Poisson integrals on stratified groups.Stud. Math. 66 (1979), 37-55. Zbl 0439.43005, MR 0562450, 10.4064/sm-66-1-37-55 |
Reference:
|
[5] Folland, G. B., Stein, E. M.: Hardy Spaces on Homogeneous Groups.Mathematical Notes 28, Princeton University Press, Princeton (1982). Zbl 0508.42025, MR 0657581 |
Reference:
|
[6] Führ, H., Mayeli, A.: Homogeneous Besov spaces on stratified Lie groups and their wavelet characterization.J. Funct. Spaces Appl. 2012 (2012), Article ID. 523586, 41 pages. Zbl 1255.46016, MR 2923803, 10.1155/2012/523586 |
Reference:
|
[7] Furioli, G., Melzi, C., Veneruso, A.: Littlewood-Paley decompositions and Besov spaces on Lie groups of polynomial growth.Math. Nachr. 279 (2006), 1028-1040. Zbl 1101.22006, MR 2242964, 10.1002/mana.200510409 |
Reference:
|
[8] Giulini, S.: Approximation and Besov spaces on stratified groups.Proc. Am. Math. Soc. 96 (1986), 569-578. Zbl 0605.41013, MR 0826483, 10.2307/2046306 |
Reference:
|
[9] Grafakos, L.: Modern Fourier Analysis.Graduate Texts in Mathematics 250, Springer, New York (2009). Zbl 1158.42001, MR 2463316, 10.1007/978-0-387-09434-2 |
Reference:
|
[10] Hu, G.: Maximal Hardy spaces associated to nonnegative self-adjoint operators.Bull. Aust. Math. Soc. 91 (2015), 286-302. Zbl 1316.42024, MR 3314148, 10.1017/S0004972714001105 |
Reference:
|
[11] Hulanicki, A.: A functional calculus for Rockland operators on nilpotent Lie groups.Stud. Math. 78 (1984), 253-266. Zbl 0595.43007, MR 0782662, 10.4064/sm-78-3-253-266 |
Reference:
|
[12] Kerkyacharian, G., Petrushev, P.: Heat kernel based decomposition of spaces of distributions in the framework of Dirichlet spaces.Trans. Am. Math. Soc. 367 (2015), 121-189. Zbl 1321.58017, MR 3271256, 10.1090/S0002-9947-2014-05993-X |
Reference:
|
[13] Rudin, W.: Functional Analysis.International Series in Pure and Applied Mathematics, McGraw-Hill, New York (1991). Zbl 0867.46001, MR 1157815 |
Reference:
|
[14] Saka, K.: Besov spaces and Sobolev spaces on a nilpotent Lie group.Tohoku Math. J., II. Ser. 31 (1979), 383-437. Zbl 0429.43004, MR 0558675, 10.2748/tmj/1178229728 |
Reference:
|
[15] Triebel, H.: Theory of Function Spaces.Monographs in Mathematics 78, Birkhäuser, Basel (1983). Zbl 0546.46027, MR 0781540, 10.1007/978-3-0346-0416-1 |
Reference:
|
[16] Varopoulos, N., Saloff-Coste, L., Coulhon, T.: Analysis and Geometry on Groups.Cambridge Tracts in Mathematics 100, Cambridge University Press, Cambridge (1992). Zbl 1179.22009, MR 1218884, 10.1017/CBO9780511662485 |
. |