Previous |  Up |  Next

Article

Title: Torsion groups of a family of elliptic curves over number fields (English)
Author: Dey, Pallab Kanti
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 69
Issue: 1
Year: 2019
Pages: 161-171
Summary lang: English
.
Category: math
.
Summary: We compute the torsion group explicitly over quadratic fields and number fields of degree coprime to 6 for a family of elliptic curves of the form $E\colon y^2 = x^3 +c$, where $c$ is an integer. (English)
Keyword: torsion group
Keyword: elliptic curve
Keyword: number field
MSC: 11R04
MSC: 14H52
idZBL: Zbl 07088776
idMR: MR3923581
DOI: 10.21136/CMJ.2018.0214-17
.
Date available: 2019-03-08T14:58:46Z
Last updated: 2021-04-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147624
.
Reference: [1] Ayoub, R.: An Introduction to the Analytic Theory of Numbers.Mathematical Surveys 10, American Mathematical Society, Providence (1963). Zbl 0128.04303, MR 0160743, 10.1090/surv/010
Reference: [2] Bourdon, A., Clark, P. L., Stankewicz, J.: Torsion points on CM elliptic curves over real number fields.Trans. Am. Math. Soc. 369 (1996), 8457-8496. Zbl 06790352, MR 3710632, 10.1090/tran/6905
Reference: [3] Dey, P. K.: Elliptic curves with rank $0$ over number fields.Funct. Approximatio, Comment. Math. 56 (2017), 25-37. Zbl 06864143, MR 3629008, 10.7169/facm/1585
Reference: [4] González-Jiménez, E.: Complete classification of the torsion structures of rational elliptic curves over quintic number fields.J. Algebra 478 (2017), 484-505. Zbl 1369.11040, MR 3621686, 10.1016/j.jalgebra.2017.01.012
Reference: [5] Jeon, D., Kim, C. H., Park, E.: On the torsion of elliptic curves over quartic number fields.J. Lond. Math. Soc., II. Ser. 74 (2006), 1-12. Zbl 1165.11054, MR 2254548, 10.1112/S0024610706022940
Reference: [6] Kamienny, S.: Torsion points on elliptic curves and $q$-coefficients of modular forms.Invent. Math. 109 (1992), 221-229. Zbl 0773.14016, MR 1172689, 10.1007/BF01232025
Reference: [7] Kenku, M. A., Momose, F.: Torsion points on elliptic curves defined over quadratic fields.Nagoya Math. J. 109 (1988), 125-149. Zbl 0647.14020, MR 0931956, 10.1017/S0027763000002816
Reference: [8] Knapp, A. W.: Elliptic Curves.Mathematical Notes (Princeton) 40, Princeton University Press, Princeton (1992). Zbl 0804.14013, MR 1193029
Reference: [9] Mazur, B.: Modular curves and the Eisenstein ideal.Publ. Math., Inst. Hautes Étud. Sci. 47 (1977), 33-186. Zbl 0394.14008, MR 0488287, 10.1007/BF02684339
Reference: [10] Najman, F.: Complete classification of torsion of elliptic curves over quadratic cyclotomic fields.J. Number Theory 130 (2010), 1964-1968. Zbl 1200.11039, MR 2653208, 10.1016/j.jnt.2009.12.008
Reference: [11] Najman, F.: Torsion of elliptic curves over quadratic cyclotomic fields.Math. J. Okayama Univ. 53 (2011), 75-82. Zbl 1222.11076, MR 2778886
Reference: [12] Najman, F.: Torsion of rational elliptic curves over cubic fields and sporadic points on $X_1(n)$.Math. Res. Lett. 23 (2016), 245-272. Zbl 06609434, MR 3512885, 10.4310/MRL.2016.v23.n1.a12
Reference: [13] Olson, L. D.: Points of finite order on elliptic curves with complex multiplication.Manuscr. Math. 14 (1974), 195-205. Zbl 0292.14015, MR 0352104, 10.1007/BF01171442
Reference: [14] Washington, L. C.: Elliptic Curves. Number Theory and Cryptography.Chapman and Hall/CRC, Boca Raton (2008). Zbl 1200.11043, MR 2404461, 10.4324/9780203484029
.

Files

Files Size Format View
CzechMathJ_69-2019-1_13.pdf 283.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo