Previous |  Up |  Next

Article

Title: A new class of almost complex structures on tangent bundle of a Riemannian manifold (English)
Author: Baghban, Amir
Author: Abedi, Esmaeil
Language: English
Journal: Communications in Mathematics
ISSN: 1804-1388
Volume: 26
Issue: 2
Year: 2018
Pages: 137-145
Summary lang: English
.
Category: math
.
Summary: In this paper, the standard almost complex structure on the tangent bunle of a Riemannian manifold will be generalized. We will generalize the standard one to the new ones such that the induced $(0,2)$-tensor on the tangent bundle using these structures and Liouville $1$-form will be a Riemannian metric. Moreover, under the integrability condition, the curvature operator of the base manifold will be classified. (English)
Keyword: Almost complex structure
Keyword: curvature operator
Keyword: integrability
Keyword: tangent bundle
MSC: 32Q60
MSC: 58A30
idZBL: Zbl 07058960
idMR: MR3898198
.
Date available: 2019-05-07T09:24:54Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147656
.
Reference: [1] Abbassi, M.T.K., Calvaruso, G., Perrone, D.: Harmonic sections of tangent bundles equipped with Riemannian g-natural metrics.Q. J. Math., 62, 2, 2011, 259-288, MR 2805204, 10.1093/qmath/hap040
Reference: [2] Aguilar, R. M.: Isotropic almost complex structures on tangent bundles.Manuscripta Math., 90, 4, 1996, 429-436, MR 1403714, 10.1007/BF02568316
Reference: [3] Biswas, I., Loftin, J., Stemmler, M.: Flat bundles on affine manifolds.Arabian Journal of Mathematics, 2, 2, 2013, 159-175, MR 3055288, 10.1007/s40065-012-0064-8
Reference: [4] Choi, J., Mullhaupt, A. P.: Kählerian information geometry for signal processing.Entropy, 17, 2015, 1581-1605, MR 3344374, 10.3390/e17041581
Reference: [5] Friswell, R. M., Wood, C. M.: Harmonic vector fields on pseudo-Riemannian manifolds.Journal of Geometry and Physics, 112, 2017, 45-58, MR 3588756, 10.1016/j.geomphys.2016.10.015
Reference: [6] Lisi, S.T.: Applications of Symplectic Geometry to Hamiltonian Mechanics.2006, PhD thesis, New York University. MR 2708404
Reference: [7] Petersen, P.: Riemannian Geometry.2006, Springer, Zbl 1220.53002, MR 2243772
Reference: [8] Peyghan, E., Heydari, A., Far, L. Nourmohammadi: On the geometry of tangent bundles with a class of metrics.Annales Polonici Mathematici, 103, 2012, 229-246, MR 2876391, 10.4064/ap103-3-2
Reference: [9] Peyghan, E., Nasrabadi, H., Tayebi, A.: The homogenous lift to the $(1,1)$-tensor bundle of a Riemannian metric.Int. J. Geom Meth. Modern Phys., 10, 4, 2013, 18p, MR 3037240
Reference: [10] Salimov, A. A., Gezer, A.: On the geometry of the $(1,1)$-tensor bundle with Sasaki type metric.Chinese Ann. Math. Ser. B, 32, 3, 2011, 1-18, MR 2805406, 10.1007/s11401-011-0646-3
Reference: [11] Zhang, J., Li, F.: Symplectic and Kähler structures on statistical manifolds induced from divergence functions.Conference paper in Geometric Science of Information, 2013, 595-603, Springer, MR 3126092
.

Files

Files Size Format View
ActaOstrav_26-2018-2_5.pdf 391.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo