Title:
|
A new class of almost complex structures on tangent bundle of a Riemannian manifold (English) |
Author:
|
Baghban, Amir |
Author:
|
Abedi, Esmaeil |
Language:
|
English |
Journal:
|
Communications in Mathematics |
ISSN:
|
1804-1388 |
Volume:
|
26 |
Issue:
|
2 |
Year:
|
2018 |
Pages:
|
137-145 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper, the standard almost complex structure on the tangent bunle of a Riemannian manifold will be generalized. We will generalize the standard one to the new ones such that the induced $(0,2)$-tensor on the tangent bundle using these structures and Liouville $1$-form will be a Riemannian metric. Moreover, under the integrability condition, the curvature operator of the base manifold will be classified. (English) |
Keyword:
|
Almost complex structure |
Keyword:
|
curvature operator |
Keyword:
|
integrability |
Keyword:
|
tangent bundle |
MSC:
|
32Q60 |
MSC:
|
58A30 |
idZBL:
|
Zbl 07058960 |
idMR:
|
MR3898198 |
. |
Date available:
|
2019-05-07T09:24:54Z |
Last updated:
|
2020-01-05 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/147656 |
. |
Reference:
|
[1] Abbassi, M.T.K., Calvaruso, G., Perrone, D.: Harmonic sections of tangent bundles equipped with Riemannian g-natural metrics.Q. J. Math., 62, 2, 2011, 259-288, MR 2805204, 10.1093/qmath/hap040 |
Reference:
|
[2] Aguilar, R. M.: Isotropic almost complex structures on tangent bundles.Manuscripta Math., 90, 4, 1996, 429-436, MR 1403714, 10.1007/BF02568316 |
Reference:
|
[3] Biswas, I., Loftin, J., Stemmler, M.: Flat bundles on affine manifolds.Arabian Journal of Mathematics, 2, 2, 2013, 159-175, MR 3055288, 10.1007/s40065-012-0064-8 |
Reference:
|
[4] Choi, J., Mullhaupt, A. P.: Kählerian information geometry for signal processing.Entropy, 17, 2015, 1581-1605, MR 3344374, 10.3390/e17041581 |
Reference:
|
[5] Friswell, R. M., Wood, C. M.: Harmonic vector fields on pseudo-Riemannian manifolds.Journal of Geometry and Physics, 112, 2017, 45-58, MR 3588756, 10.1016/j.geomphys.2016.10.015 |
Reference:
|
[6] Lisi, S.T.: Applications of Symplectic Geometry to Hamiltonian Mechanics.2006, PhD thesis, New York University. MR 2708404 |
Reference:
|
[7] Petersen, P.: Riemannian Geometry.2006, Springer, Zbl 1220.53002, MR 2243772 |
Reference:
|
[8] Peyghan, E., Heydari, A., Far, L. Nourmohammadi: On the geometry of tangent bundles with a class of metrics.Annales Polonici Mathematici, 103, 2012, 229-246, MR 2876391, 10.4064/ap103-3-2 |
Reference:
|
[9] Peyghan, E., Nasrabadi, H., Tayebi, A.: The homogenous lift to the $(1,1)$-tensor bundle of a Riemannian metric.Int. J. Geom Meth. Modern Phys., 10, 4, 2013, 18p, MR 3037240 |
Reference:
|
[10] Salimov, A. A., Gezer, A.: On the geometry of the $(1,1)$-tensor bundle with Sasaki type metric.Chinese Ann. Math. Ser. B, 32, 3, 2011, 1-18, MR 2805406, 10.1007/s11401-011-0646-3 |
Reference:
|
[11] Zhang, J., Li, F.: Symplectic and Kähler structures on statistical manifolds induced from divergence functions.Conference paper in Geometric Science of Information, 2013, 595-603, Springer, MR 3126092 |
. |