Previous |  Up |  Next

Article

Title: A Study on $\phi $-recurrence $\tau $-curvature tensor in $(k,\mu )$-contact metric manifolds (English)
Author: Ingalahalli, Gurupadavva
Author: Bagewadi, C.S.
Language: English
Journal: Communications in Mathematics
ISSN: 1804-1388
Volume: 26
Issue: 2
Year: 2018
Pages: 127-136
Summary lang: English
.
Category: math
.
Summary: In this paper we study $\phi $-recurrence $\tau $-curvature tensor in\\ $(k,\mu )$-contact metric manifolds. (English)
Keyword: Contact metric manifold
Keyword: curvature tensor
Keyword: Ricci tensor
Keyword: Ricci operator.
MSC: 53C15
MSC: 53C25
MSC: 53D15
idZBL: Zbl 07058956
idMR: MR3898194
.
Date available: 2019-05-07T09:23:54Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147651
.
Reference: [1] Blair, D.E.: Contact metric manifolds in Riemannian geometry.1976, Springer-Verlag, Berlin-New-York, Lecture Notes in Mathematics 509. MR 0467588, 10.1007/BFb0079308
Reference: [2] Blair, D.E., Koufogiorgos, T., Papantoniou, B.J.: Contact metric manifolds satisfying a nullity condition.Israel J. Math., 91, 1995, 189-214, Zbl 0837.53038, MR 1348312, 10.1007/BF02761646
Reference: [3] Boeckx, E., Buecken, P., Vanhecke, L.: $\phi $-symmetric contact metric spaces.Glasgow Math. J., 41, 1999, 409-416, MR 1720426, 10.1017/S0017089599000579
Reference: [4] De, U.C., Gazi, A.K.: On $\phi $-recurrent $N(k)$-contact metric manifolds.Math. J. Okayama Univ., 50, 2008, 101-112, MR 2376549
Reference: [5] De, U.C., Shaikh, A.A., Biswas, S.: On $\phi $-recurrent Sasakian manifolds.Novi Sad J. Math., 33, 2003, 13-48, MR 2046161
Reference: [6] Nagaraja, H.G., Somashekhara, G.: $\tau $-curvature tensor in $(k,\mu )$-contact metric manifolds.Mathematica Aeterna, 2, 6, 2012, 523-532, MR 2969174
Reference: [7] Papantonion, B.J.: Contact Riemannian manifolds satisfying $R(\xi ,X)\cdot R=0$ and $\xi \in (k,\mu )$-nullity distribution.Yokohama Math. J., 40, 2, 1993, 149-161, MR 1216349
Reference: [8] Premalatha, C.R., Nagaraja, H.G.: On Generalized $(k,\mu )$-space forms.Journal of Tensor Society, 7, 2013, 29-38, MR 3676345
Reference: [9] Shaikh, A.A., Baishya, K.K.: On $(k,\mu )$-contact metric manifolds.Differential Geometry - Dynamical Systems, 8, 2006, 253-261, MR 2220732
Reference: [10] Sharma, R., Blair, D.E.: Conformal motion of contact manifolds with characteristic vector field in the $k$-nullity distribution.Illinois J. Math., 42, 1998, 673-677, MR 1649889, 10.1215/ijm/1255985467
Reference: [11] Tanno, S.: Ricci curvatures of contact Riemannian manifolds.Tohoku Math. J., 40, 1988, 441-448, Zbl 0655.53035, MR 0957055, 10.2748/tmj/1178227985
Reference: [12] Takahashi, T.: Sasakian $\phi $-symmetric spaces.Tohoku Math. J., 29, 1977, 91-113, MR 0440472, 10.2748/tmj/1178240699
Reference: [13] Tripathi, M.M., Gupta, P.: $\tau $-curvature tensor on a semi-Riemannian manifold.J. Adv. Math. Stud., 4, 1, 2011, 117-129, MR 2808047
Reference: [14] Tripathi, M.M., Gupta, P.: On $\tau $-curvature tensor in K-contact and Sasakian manifolds.International Electronic Journal of Geometry, 4, 2011, 32-47, MR 2801462
Reference: [15] Tripathi, M.M., Gupta, P.: $(N(k),\xi )$-semi-Riemannian manifolds: Semisymmetries.arXiv:1202.6138v[math.DG], 28, 2012, MR 2915487
.

Files

Files Size Format View
ActaOstrav_26-2018-2_4.pdf 367.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo