Title:
|
A Study on $\phi $-recurrence $\tau $-curvature tensor in $(k,\mu )$-contact metric manifolds (English) |
Author:
|
Ingalahalli, Gurupadavva |
Author:
|
Bagewadi, C.S. |
Language:
|
English |
Journal:
|
Communications in Mathematics |
ISSN:
|
1804-1388 |
Volume:
|
26 |
Issue:
|
2 |
Year:
|
2018 |
Pages:
|
127-136 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper we study $\phi $-recurrence $\tau $-curvature tensor in\\ $(k,\mu )$-contact metric manifolds. (English) |
Keyword:
|
Contact metric manifold |
Keyword:
|
curvature tensor |
Keyword:
|
Ricci tensor |
Keyword:
|
Ricci operator. |
MSC:
|
53C15 |
MSC:
|
53C25 |
MSC:
|
53D15 |
idZBL:
|
Zbl 07058956 |
idMR:
|
MR3898194 |
. |
Date available:
|
2019-05-07T09:23:54Z |
Last updated:
|
2020-01-05 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/147651 |
. |
Reference:
|
[1] Blair, D.E.: Contact metric manifolds in Riemannian geometry.1976, Springer-Verlag, Berlin-New-York, Lecture Notes in Mathematics 509. MR 0467588, 10.1007/BFb0079308 |
Reference:
|
[2] Blair, D.E., Koufogiorgos, T., Papantoniou, B.J.: Contact metric manifolds satisfying a nullity condition.Israel J. Math., 91, 1995, 189-214, Zbl 0837.53038, MR 1348312, 10.1007/BF02761646 |
Reference:
|
[3] Boeckx, E., Buecken, P., Vanhecke, L.: $\phi $-symmetric contact metric spaces.Glasgow Math. J., 41, 1999, 409-416, MR 1720426, 10.1017/S0017089599000579 |
Reference:
|
[4] De, U.C., Gazi, A.K.: On $\phi $-recurrent $N(k)$-contact metric manifolds.Math. J. Okayama Univ., 50, 2008, 101-112, MR 2376549 |
Reference:
|
[5] De, U.C., Shaikh, A.A., Biswas, S.: On $\phi $-recurrent Sasakian manifolds.Novi Sad J. Math., 33, 2003, 13-48, MR 2046161 |
Reference:
|
[6] Nagaraja, H.G., Somashekhara, G.: $\tau $-curvature tensor in $(k,\mu )$-contact metric manifolds.Mathematica Aeterna, 2, 6, 2012, 523-532, MR 2969174 |
Reference:
|
[7] Papantonion, B.J.: Contact Riemannian manifolds satisfying $R(\xi ,X)\cdot R=0$ and $\xi \in (k,\mu )$-nullity distribution.Yokohama Math. J., 40, 2, 1993, 149-161, MR 1216349 |
Reference:
|
[8] Premalatha, C.R., Nagaraja, H.G.: On Generalized $(k,\mu )$-space forms.Journal of Tensor Society, 7, 2013, 29-38, MR 3676345 |
Reference:
|
[9] Shaikh, A.A., Baishya, K.K.: On $(k,\mu )$-contact metric manifolds.Differential Geometry - Dynamical Systems, 8, 2006, 253-261, MR 2220732 |
Reference:
|
[10] Sharma, R., Blair, D.E.: Conformal motion of contact manifolds with characteristic vector field in the $k$-nullity distribution.Illinois J. Math., 42, 1998, 673-677, MR 1649889, 10.1215/ijm/1255985467 |
Reference:
|
[11] Tanno, S.: Ricci curvatures of contact Riemannian manifolds.Tohoku Math. J., 40, 1988, 441-448, Zbl 0655.53035, MR 0957055, 10.2748/tmj/1178227985 |
Reference:
|
[12] Takahashi, T.: Sasakian $\phi $-symmetric spaces.Tohoku Math. J., 29, 1977, 91-113, MR 0440472, 10.2748/tmj/1178240699 |
Reference:
|
[13] Tripathi, M.M., Gupta, P.: $\tau $-curvature tensor on a semi-Riemannian manifold.J. Adv. Math. Stud., 4, 1, 2011, 117-129, MR 2808047 |
Reference:
|
[14] Tripathi, M.M., Gupta, P.: On $\tau $-curvature tensor in K-contact and Sasakian manifolds.International Electronic Journal of Geometry, 4, 2011, 32-47, MR 2801462 |
Reference:
|
[15] Tripathi, M.M., Gupta, P.: $(N(k),\xi )$-semi-Riemannian manifolds: Semisymmetries.arXiv:1202.6138v[math.DG], 28, 2012, MR 2915487 |
. |