Previous |  Up |  Next

Article

Title: Geometry of Mus-Sasaki metric (English)
Author: Zagane, Abderrahim
Author: Djaa, Mustapha
Language: English
Journal: Communications in Mathematics
ISSN: 1804-1388
Volume: 26
Issue: 2
Year: 2018
Pages: 113-126
Summary lang: English
.
Category: math
.
Summary: In this paper, we introduce the Mus-Sasaki metric on the tangent bundle $TM$ as a new natural metric non-rigid on $TM$. First we investigate the geometry of the Mus-Sasakian metrics and we characterize the sectional curvature and the scalar curvature. (English)
Keyword: Horizontal lift
Keyword: vertical lift
Keyword: Mus-Sasaki metric
Keyword: scalar curvature.
MSC: 53A45
MSC: 53C20
MSC: 58E20
idZBL: Zbl 07058959
idMR: MR3898197
.
Date available: 2019-05-07T09:22:44Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147658
.
Reference: [1] Abbassi, M.T.K., Sarih, M.: On Natural Metrics on Tangent Bundles of Riemannian Manifolds.Archivum Mathematicum, 41, 2005, 71-92, MR 2142144
Reference: [2] Cengiz, N., Salimov, A.A.: Diagonal lift in the tensor bundle and its applications.Appl. Math. Comput., 142, 2--3, 2003, 309-319, MR 1979438
Reference: [3] Cheeger, J., Gromoll, D.: On the structure of complete manifolds of nonnegative curvature.Ann. of Math., 96, 2, 1972, 413-443, Zbl 0246.53049, MR 0309010, 10.2307/1970819
Reference: [4] Djaa, M., Djaa, N.E.H., Nasri, R.: Natural Metrics on $T^{2}M$ and Harmonicity.International Electronic Journal of Geometry, 6, 1, 2013, 100-111, MR 3048524
Reference: [5] Djaa, M., Gancarzewicz, J.: The geometry of tangent bundles of order r.Boletin Academia, Galega de Ciencias, 4, 1985, 147-165, MR 0908354
Reference: [6] Djaa, N.E.H., Ouakkas, S., Djaa, M.: Harmonic sections on the tangent bundle of order two.Annales Mathematicae et Informaticae, 38, 2011, 15-25, MR 2872181
Reference: [7] Dombrowski, P.: On the Geometry of the Tangent Bundle.J. Reine Angew. Math., 210, 1962, 73-88, MR 0141050
Reference: [8] Gezer, A.: On the Tangent Bundle With Deformed Sasaki Metric.International Electronic Journal of Geometry, 6, 2, 2013, 19-31, MR 3125828
Reference: [9] Gudmundsson, S., Kappos, E.: On the Geometry of the Tangent Bundle with the Cheeger-Gromoll Metric.Tokyo J. Math., 25, 1, 2002, 75-83, MR 1908215, 10.3836/tjm/1244208938
Reference: [10] Sekizawa, O. Kowalski and M.: On Riemannian Geometry Of Tangent Sphere Bundles With Arbitrary Constant Radius.Archivum Mathematicum, 44, 2008, 391-401, MR 2501575
Reference: [11] Musso, E., Tricerri, F.: Riemannian Metrics on Tangent Bundles.Ann. Mat. Pura Appl., 150, 4, 1988, 1-19, MR 0946027, 10.1007/BF01761461
Reference: [12] Salimov, A.A., Agca, F.: Some Properties of Sasakian Metrics in Cotangent Bundles.Mediterranean Journal of Mathematics, 8, 2, 2011, 243-255, MR 2802327
Reference: [13] Salimov, A.A, Gezer, A.: On the geometry of the $(1, 1$)-tensor bundle with Sasaki type metric.Chinese Annals of Mathematics, 32, 3, 2011, 369-386, MR 2805406, 10.1007/s11401-011-0646-3
Reference: [14] Salimov, A.A., Gezer, A., Akbulut, K.: Geodesics of Sasakian metrics on tensor bundles.Mediterr. J. Math, 6, 2, 2009, 135-147, MR 2516246, 10.1007/s00009-009-0001-z
Reference: [15] Salimov, A.A., Kazimova, S.: Geodesics of the Cheeger-Gromoll Metric.Turk. J. Math., 33, 2009, 99-105, MR 2524119
Reference: [16] Sasaki, S.: On the differential geometry of tangent bundles of Riemannian manifolds II.Tohoku Math. J., 14, 1962, 146-155, MR 0145456, 10.2748/tmj/1178244169
Reference: [17] Sekizawa, M.: Curvatures of Tangent Bundles with Cheeger-Gromoll Metric.Tokyo J. Math., 14, 2, 1991, 407-417, MR 1138176, 10.3836/tjm/1270130381
Reference: [18] Yano, K., Ishihara, S.: Tangent and Cotangent Bundles.1973, Marcel Dekker. INC., New York, Zbl 0262.53024, MR 0350650
.

Files

Files Size Format View
ActaOstrav_26-2018-2_3.pdf 393.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo