[1] Bartoszyński T., Judah H.: 
Set Theory. On the structure of the real line. A K Peters, Wellesley, 1995. 
MR 1350295[8] Federer H.: 
Geometric Measure Theory. Die Grundlehren der mathematischen Wissenschaften, 153, Springer, New York, 1969. 
MR 0257325 | 
Zbl 0874.49001[9] Fremlin D. H.: 
Measure Theory. Vol. 5, Set-theoretic Measure Theory, Part I. Torres Fremlin, Colchester, 2015. 
MR 3723041[11] Galvin F., Mycielski J., Solovay R. M.: Strong measure zero sets. Abstract 79T–E25, Not. Am. Math. Soc. 26 (1979), A-280.
[14] Gödel K.: 
The consistency of the axiom of choice and of the generalized continuum-hypothesis. Proc. Natl. Acad. Sci. USA 24 (1938), no. 12, 556–557. 
DOI 10.1073/pnas.24.12.556[15] Gödel K.: 
The Consistency of the Continuum Hypothesis. Annals of Mathematics Studies, 3, Princeton University Press, Princeton, 1940. 
MR 0002514[16] Howroyd J. D.: 
On the Theory of Hausdorff Measures in Metric Spaces. Ph.D. Thesis, University College, London, 1994. 
MR 1365084[18] Hrušák M., Wohofsky W., Zindulka O.: 
Strong measure zero in separable metric spaces and Polish groups. Arch. Math. Logic 55 (2016), no. 1–2, 105–131. 
DOI 10.1007/s00153-015-0459-2 | 
MR 3453581[20] Kelly J. D.: 
A method for constructing measures appropriate for the study of Cartesian products. Proc. London Math. Soc. (3) 26 (1973), 521–546. 
MR 0318427[21] Kysiak M.: On Erdős-Sierpiński Duality between Lebesgue Measure and Baire Category. Master's Thesis, Uniwersytet Warszawski, Warszawa, 2000 (Polish).
[23] Munroe M. E.: 
Introduction to Measure and Integration. Addison-Wesley Publishing Company, Cambridge, 1953. 
MR 0053186[25] Nowik A., Weiss T.: 
On the Ramseyan properties of some special subsets of $2^\omega$ and their algebraic sums. J. Symbolic Logic 67 (2002), no. 2, 547–556. 
DOI 10.2178/jsl/1190150097 | 
MR 1905154[27] Rogers C. A.: 
Hausdorff Measures. Cambridge University Press, London, 1970. 
MR 0281862[30] Sierpiński W.: 
Sur un ensemble non denombrable, dont toute image continue est de mesure nulle. Fundamenta Mathematicae 11 (1928), no. 1, 302–304 (French). 
DOI 10.4064/fm-11-1-302-303[32] Weiss T.: 
On meager additive and null additive sets in the Cantor space $2^\omega$ and in $\Bbb R$. Bull. Pol. Acad. Sci. Math. 57 (2009), no. 2, 91–99. 
MR 2545840[33] Weiss T.: 
Addendum to “On meager additive and null additive sets in the Cantor space $2^\omega$ and in $\Bbb R$” (Bull. Polish Acad. Sci. Math. 57 (2009), 91–99). Bull. Pol. Acad. Sci. Math. 62 (2014), no. 1, 1–9. 
DOI 10.4064/ba57-2-1 | 
MR 3241126[34] Weiss T.: 
Properties of the intersection ideal $\mathcal M\cap \mathcal N$ revisited. Bull. Pol. Acad. Sci. Math. 65 (2017), no. 2, 107–111. 
DOI 10.4064/ba8098-8-2017 | 
MR 3731016[35] Weiss T., Tsaban B.: 
Topological diagonalizations and Hausdorff dimension. Note Mat. 22 (2003/04), no. 2, 83–92. 
MR 2112732[36] Wohofsky W.: Special Sets of Real Numbers and Variants of the Borel Conjecture. Ph.D. Thesis, Technische Universität Wien, Wien, 2013.
[39] Zindulka O.: 
Universal measure zero, large Hausdorff dimension, and nearly Lipschitz maps. Fund. Math. 218 (2012), no. 2, 95–119. 
DOI 10.4064/fm218-2-1 | 
MR 2957686