Previous |  Up |  Next

Article

Title: Strong measure zero and meager-additive sets through the prism of fractal measures (English)
Author: Zindulka, Ondřej
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 60
Issue: 1
Year: 2019
Pages: 131-155
Summary lang: English
.
Category: math
.
Summary: We develop a theory of sharp measure zero sets that parallels Borel's strong measure zero, and prove a theorem analogous to Galvin--Mycielski--Solovay theorem, namely that a set of reals has sharp measure zero if and only if it is meager-additive. Some consequences: A subset of $2^{\omega}$ is meager-additive if and only if it is $\mathcal E$-additive; if $f\colon 2^{\omega}\to 2^{\omega}$ is continuous and $X$ is meager-additive, then so is $f(X)$. (English)
Keyword: meager-additive
Keyword: $\mathcal E$-additive
Keyword: strong measure zero
Keyword: sharp measure zero
Keyword: Hausdorff dimension
Keyword: Hausdorff measure
MSC: 03E05
MSC: 03E20
MSC: 28A78
idZBL: Zbl 07088828
idMR: MR3946667
DOI: 10.14712/1213-7243.2015.277
.
Date available: 2019-05-13T07:52:02Z
Last updated: 2021-04-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147668
.
Reference: [1] Bartoszyński T., Judah H.: Set Theory.On the structure of the real line. A K Peters, Wellesley, 1995. MR 1350295
Reference: [2] Bartoszyński T., Shelah S.: Closed measure zero sets.Ann. Pure Appl. Logic 58 (1992), no. 2, 93–110. MR 1186905, 10.1016/0168-0072(92)90001-G
Reference: [3] Besicovitch A. S.: Concentrated and rarified sets of points.Acta Math. 62 (1933), no. 1, 289–300. MR 1555386, 10.1007/BF02393607
Reference: [4] Besicovitch A. S.: Correction.Acta Math. 62 (1933), no. 1, 317–318. MR 1555389, 10.1007/BF02393610
Reference: [5] Borel E.: Sur la classification des ensembles de mesure nulle.Bull. Soc. Math. France 47 (1919), 97–125 (French). MR 1504785, 10.24033/bsmf.996
Reference: [6] Carlson T. J.: Strong measure zero and strongly meager sets.Proc. Amer. Math. Soc. 118 (1993), no. 2, 577–586. MR 1139474, 10.1090/S0002-9939-1993-1139474-6
Reference: [7] Corazza P.: The generalized Borel conjecture and strongly proper orders.Trans. Amer. Math. Soc. 316 (1989), no. 1, 115–140. MR 0982239, 10.1090/S0002-9947-1989-0982239-X
Reference: [8] Federer H.: Geometric Measure Theory.Die Grundlehren der mathematischen Wissenschaften, 153, Springer, New York, 1969. Zbl 0874.49001, MR 0257325
Reference: [9] Fremlin D. H.: Measure Theory. Vol. 5, Set-theoretic Measure Theory, Part I.Torres Fremlin, Colchester, 2015. MR 3723041
Reference: [10] Galvin F., Miller A. W.: {$\gamma $.-sets and other singular sets of real numbers}, Topology Appl. 17 (1984), no. 2, 145–155. MR 0738943, 10.1016/0166-8641(84)90038-5
Reference: [11] Galvin F., Mycielski J., Solovay R. M.: Strong measure zero sets.Abstract 79T–E25, Not. Am. Math. Soc. 26 (1979), A-280.
Reference: [12] Galvin F., Mycielski J., Solovay R. M.: Strong measure zero and infinite games.Arch. Math. Logic 56 (2017), no. 7–8, 725–732. MR 3696064, 10.1007/s00153-017-0541-z
Reference: [13] Gerlits J., Nagy Z.: Some properties of {$C(X)$.I}, Topology Appl. 14 (1982), no. 2, 151–161. MR 0667661, 10.1016/0166-8641(82)90065-7
Reference: [14] Gödel K.: The consistency of the axiom of choice and of the generalized continuum-hypothesis.Proc. Natl. Acad. Sci. USA 24 (1938), no. 12, 556–557. 10.1073/pnas.24.12.556
Reference: [15] Gödel K.: The Consistency of the Continuum Hypothesis.Annals of Mathematics Studies, 3, Princeton University Press, Princeton, 1940. MR 0002514
Reference: [16] Howroyd J. D.: On the Theory of Hausdorff Measures in Metric Spaces.Ph.D. Thesis, University College, London, 1994. MR 1365084
Reference: [17] Howroyd J. D.: On Hausdorff and packing dimension of product spaces.Math. Proc. Cambridge Philos. Soc. 119 (1996), no. 4, 715–727. MR 1362951, 10.1017/S0305004100074545
Reference: [18] Hrušák M., Wohofsky W., Zindulka O.: Strong measure zero in separable metric spaces and Polish groups.Arch. Math. Logic 55 (2016), no. 1–2, 105–131. MR 3453581, 10.1007/s00153-015-0459-2
Reference: [19] Hrušák M., Zapletal J.: Strong measure zero sets in Polish groups.Illinois J. Math. 60 (2016), no. 3–4, 751–760. MR 3707641, 10.1215/ijm/1506067289
Reference: [20] Kelly J. D.: A method for constructing measures appropriate for the study of Cartesian products.Proc. London Math. Soc. (3) 26 (1973), 521–546. MR 0318427
Reference: [21] Kysiak M.: On Erdős-Sierpiński Duality between Lebesgue Measure and Baire Category.Master's Thesis, Uniwersytet Warszawski, Warszawa, 2000 (Polish).
Reference: [22] Laver R.: On the consistency of Borel's conjecture.Acta Math. 137 (1976), no. 3–4, 151–169. Zbl 0357.28003, MR 0422027, 10.1007/BF02392416
Reference: [23] Munroe M. E.: Introduction to Measure and Integration.Addison-Wesley Publishing Company, Cambridge, 1953. MR 0053186
Reference: [24] Nowik A., Scheepers M., Weiss T.: The algebraic sum of sets of real numbers with strong measure zero sets.J. Symbolic Logic 63 (1998), no. 1, 301–324. Zbl 0901.03036, MR 1610427, 10.2307/2586602
Reference: [25] Nowik A., Weiss T.: On the Ramseyan properties of some special subsets of $2^\omega$ and their algebraic sums.J. Symbolic Logic 67 (2002), no. 2, 547–556. MR 1905154, 10.2178/jsl/1190150097
Reference: [26] Pawlikowski J.: A characterization of strong measure zero sets.Israel J. Math. 93 (1996), 171–183. Zbl 0857.28001, MR 1380640, 10.1007/BF02761100
Reference: [27] Rogers C. A.: Hausdorff Measures.Cambridge University Press, London, 1970. MR 0281862
Reference: [28] Scheepers M.: Finite powers of strong measure zero sets.J. Symbolic Logic 64 (1999), no. 3, 1295–1306. MR 1779763, 10.2307/2586631
Reference: [29] Shelah S.: Every null-additive set is meager-additive.Israel J. Math. 89 (1995), no. 1–3, 357–376. MR 1324470, 10.1007/BF02808209
Reference: [30] Sierpiński W.: Sur un ensemble non denombrable, dont toute image continue est de mesure nulle.Fundamenta Mathematicae 11 (1928), no. 1, 302–304 (French). 10.4064/fm-11-1-302-303
Reference: [31] Tsaban B., Weiss T.: Products of special sets of real numbers.Real Anal. Exchange 30 (2004/05), no. 2, 819–835. MR 2177439, 10.14321/realanalexch.30.2.0819
Reference: [32] Weiss T.: On meager additive and null additive sets in the Cantor space $2^\omega$ and in $\Bbb R$.Bull. Pol. Acad. Sci. Math. 57 (2009), no. 2, 91–99. MR 2545840
Reference: [33] Weiss T.: Addendum to “On meager additive and null additive sets in the Cantor space $2^\omega$ and in $\Bbb R$” (Bull. Polish Acad. Sci. Math. 57 (2009), 91–99).Bull. Pol. Acad. Sci. Math. 62 (2014), no. 1, 1–9. MR 3241126, 10.4064/ba57-2-1
Reference: [34] Weiss T.: Properties of the intersection ideal $\mathcal M\cap \mathcal N$ revisited.Bull. Pol. Acad. Sci. Math. 65 (2017), no. 2, 107–111. MR 3731016, 10.4064/ba8098-8-2017
Reference: [35] Weiss T., Tsaban B.: Topological diagonalizations and Hausdorff dimension.Note Mat. 22 (2003/04), no. 2, 83–92. MR 2112732
Reference: [36] Wohofsky W.: Special Sets of Real Numbers and Variants of the Borel Conjecture.Ph.D. Thesis, Technische Universität Wien, Wien, 2013.
Reference: [37] Zakrzewski P.: Universally meager sets.Proc. Amer. Math. Soc. 129 (2001), no. 6, 1793–1798. MR 1814112, 10.1090/S0002-9939-00-05726-9
Reference: [38] Zakrzewski P.: Universally meager sets. II.Topology Appl. 155 (2008), no. 13, 1445–1449. MR 2427418, 10.1016/j.topol.2008.05.005
Reference: [39] Zindulka O.: Universal measure zero, large Hausdorff dimension, and nearly Lipschitz maps.Fund. Math. 218 (2012), no. 2, 95–119. MR 2957686, 10.4064/fm218-2-1
Reference: [40] Zindulka O.: Packing measures and dimensions on Cartesian products.Publ. Mat. 57 (2013), no. 2, 393–420. MR 3114775, 10.5565/PUBLMAT_57213_06
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_60-2019-1_7.pdf 411.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo