Previous |  Up |  Next

Article

Title: Boundedness of Littlewood-Paley operators relative to non-isotropic dilations (English)
Author: Sato, Shuichi
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 69
Issue: 2
Year: 2019
Pages: 337-351
Summary lang: English
.
Category: math
.
Summary: We consider Littlewood-Paley functions associated with a non-isotropic dilation group on $\Bbb R^n$. We prove that certain Littlewood-Paley functions defined by kernels with no regularity concerning smoothness are bounded on weighted $L^p$ spaces, $1<p<\infty $, with weights of the Muckenhoupt class. This, in particular, generalizes a result of N. Rivière (1971).\looseness -1 (English)
Keyword: Littlewood-Paley function
Keyword: non-isotropic dilation
MSC: 42B25
MSC: 46E30
idZBL: Zbl 07088788
idMR: MR3959948
DOI: 10.21136/CMJ.2018.0313-17
.
Date available: 2019-05-24T08:55:17Z
Last updated: 2021-07-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147728
.
Reference: [1] Benedek, A., Calderón, A. P., Panzone, R.: Convolution operators on Banach space valued functions.Proc. Natl. Acad. Sci. USA 48 (1962), 356-365. Zbl 0103.33402, MR 0133653, 10.1073/pnas.48.3.356
Reference: [2] Calderón, A. P.: Inequalities for the maximal function relative to a metric.Stud. Math. 57 (1976), 297-306. Zbl 0341.44007, MR 0442579, 10.4064/sm-57-3-297-306
Reference: [3] Calderón, A. P., Torchinsky, A.: Parabolic maximal functions associated with a distribution.Adv. Math. 16 (1975), 1-64. Zbl 0315.46037, MR 0417687, 10.1016/0001-8708(75)90099-7
Reference: [4] Capri, O. N.: On an inequality in the theory of parabolic $H^p$ spaces.Rev. Unión Mat. Argent. 32 (1985), 17-28. Zbl 0643.42013, MR 0873913
Reference: [5] Cheng, L. C.: On Littlewood-Paley functions.Proc. Am. Math. Soc. 135 (2007), 3241-3247. Zbl 1124.42013, MR 2322755, 10.1090/S0002-9939-07-08917-4
Reference: [6] Ding, Y., Sato, S.: Littlewood-Paley functions on homogeneous groups.Forum Math. 28 (2016), 43-55. Zbl 1332.42007, MR 3441105, 10.1515/forum-2014-0058
Reference: [7] Duoandikoetxea, J.: Weighted norm inequalities for homogeneous singular integrals.Trans. Am. Math. Soc. 336 (1993), 869-880. Zbl 0770.42011, MR 1089418, 10.2307/2154381
Reference: [8] Duoandikoetxea, J.: Sharp $L^p$ boundedness for a class of square functions.Rev. Mat. Complut. 26 (2013), 535-548. Zbl 1334.42040, MR 3068610, 10.1007/s13163-012-0106-y
Reference: [9] Duoandikoetxea, J., Francia, J. L. Rubio de: Maximal and singular integral operators via Fourier transform estimates.Invent. Math. 84 (1986), 541-561. Zbl 0568.42012, MR 0837527, 10.1007/BF01388746
Reference: [10] Duoandikoetxea, J., Seijo, E.: Weighted inequalities for rough square functions through extrapolation.Stud. Math. 149 (2002), 239-252. Zbl 1015.42016, MR 1890732, 10.4064/sm149-3-2
Reference: [11] Fan, D., Sato, S.: Remarks on Littlewood-Paley functions and singular integrals.J. Math. Soc. Japan 54 (2002), 565-585. Zbl 1029.42010, MR 1900957, 10.2969/jmsj/1191593909
Reference: [12] Garcia-Cuerva, J., Francia, J. L. Rubio de: Weighted Norm Inequalities and Related Topics.North-Holland Mathematics Studies 116, Notas de Matemática 104, North-Holland, Amsterdam (1985). Zbl 0578.46046, MR 0807149, 10.1016/s0304-0208(08)x7154-3
Reference: [13] Hörmander, L.: Estimates for translation invariant operators in $L^p$ spaces.Acta Math. 104 (1960), 93-140. Zbl 0093.11402, MR 0121655, 10.1007/BF02547187
Reference: [14] Rivière, N.: Singular integrals and multiplier operators.Ark. Mat. 9 (1971), 243-278. Zbl 0244.42024, MR 0440268, 10.1007/BF02383650
Reference: [15] Francia, J. L. Rubio de: Factorization theory and $A_p$ weights.Am. J. Math. 106 (1984), 533-547. Zbl 0558.42012, MR 0745140, 10.2307/2374284
Reference: [16] Sato, S.: Remarks on square functions in the Littlewood-Paley theory.Bull. Aust. Math. Soc. 58 (1998), 199-211. Zbl 0914.42012, MR 1642027, 10.1017/S0004972700032172
Reference: [17] Sato, S.: Estimates for Littlewood-Paley functions and extrapolation.Integral Equations Oper. Theory 62 (2008), 429-440. Zbl 1166.42009, MR 2461129, 10.1007/s00020-008-1631-4
Reference: [18] Sato, S.: Estimates for singular integrals along surfaces of revolution.J. Aust. Math. Soc. 86 (2009), 413-430. Zbl 1182.42019, MR 2529333, 10.1017/S1446788708000773
Reference: [19] Sato, S.: Littlewood-Paley equivalence and homogeneous Fourier multipliers.Integral Equations Oper. Theory 87 (2017), 15-44. Zbl 1364.42025, MR 3609237, 10.1007/s00020-016-2333-y
Reference: [20] Stein, E. M.: Singular Integrals and Differentiability Properties of Functions.Princeton Mathematical Series 30, Princeton University Press, Princeton (1970). Zbl 0207.13501, MR 0290095, 10.1515/9781400883882
Reference: [21] Stein, E. M., Wainger, S.: Problems in harmonic analysis related to curvature.Bull. Am. Math. Soc. 84 (1978), 1239-1295. Zbl 0393.42010, MR 0508453, 10.1090/S0002-9904-1978-14554-6
.

Files

Files Size Format View
CzechMathJ_69-2019-2_4.pdf 316.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo