Title:
|
A Diophantine inequality with four squares and one $k$th power of primes (English) |
Author:
|
Mu, Quanwu |
Author:
|
Zhu, Minhui |
Author:
|
Li, Ping |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
69 |
Issue:
|
2 |
Year:
|
2019 |
Pages:
|
353-363 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $k\geq 5$ be an odd integer and $\eta $ be any given real number. We prove that if $\lambda _1$, $\lambda _2$, $\lambda _3$, $\lambda _4$, $\mu $ are nonzero real numbers, not all of the same sign, and $\lambda _1/\lambda _2$ is irrational, then for any real number $\sigma $ with $0<\sigma <1/(8\vartheta (k))$, the inequality $$ |\lambda _1p_1^2+\lambda _2p_2^2+\lambda _3p_3^2+\lambda _4p_4^2+\mu p_5^k+ \eta |<\Bigl (\max _{1\leq j\leq 5} p_j\Bigr )^{-\sigma } $$ has infinitely many solutions in prime variables $p_1, p_2, \cdots , p_5$, where $\vartheta (k)=3\times 2^{(k-5)/2}$ for $k=5,7,9$ and $\vartheta (k)=[(k^2+2k+5)/8]$ for odd integer $k$ with $k\geq 11$. This improves a recent result in W. Ge, T. Wang (2018). (English) |
Keyword:
|
Diophantine inequalities |
Keyword:
|
Davenport-Heilbronn method |
Keyword:
|
prime |
MSC:
|
11D75 |
MSC:
|
11P55 |
idZBL:
|
Zbl 07088789 |
idMR:
|
MR3959949 |
DOI:
|
10.21136/CMJ.2018.0316-17 |
. |
Date available:
|
2019-05-24T08:55:46Z |
Last updated:
|
2021-07-05 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/147729 |
. |
Reference:
|
[1] Baker, A.: On some diophantine inequalities involving primes.J. Reine Angew. Math. 228 (1967), 166-181. Zbl 0155.09202, MR 0217016, 10.1515/crll.1967.228.166 |
Reference:
|
[2] Baker, R. C., Harman, G.: Diophantine approximation by prime numbers.J. Lond. Math. Soc., II. Ser. 25 (1982), 201-215. Zbl 0443.10015, MR 0653378, 10.1112/jlms/s2-25.2.201 |
Reference:
|
[3] Bourgain, J.: On the Vinogradov mean value.Proc. Steklov Inst. Math. 296 (2017), 30-40 translated from Tr. Mat. Inst. Steklova 296 2017 36-46. Zbl 1371.11138, MR 3640771, 10.1134/S0081543817010035 |
Reference:
|
[4] Cook, R. J.: The value of additive forms at prime arguments.J. Théor. Nombres Bordx. 13 (2001), 77-91. Zbl 1047.11095, MR 1838071, 10.5802/jtnb.305 |
Reference:
|
[5] Davenport, H., Heilbronn, H.: On indefinite quadratic forms in five variables.J. Lond. Math. Soc. 21 (1946), 185-193. Zbl 0060.11914, MR 0020578, 10.1112/jlms/s1-21.3.185 |
Reference:
|
[6] Ge, W., Wang, T.: On Diophantine problems with mixed powers of primes.Acta Arith. 182 (2018), 183-199. Zbl 06857931, MR 3749367, 10.4064/aa170225-23-10 |
Reference:
|
[7] Harman, G.: Trigonometric sums over primes I.Mathematika 28 (1981), 249-254. Zbl 0465.10029, MR 0645105, 10.1112/S0025579300010305 |
Reference:
|
[8] Harman, G.: Diophantine approximation by prime numbers.J. Lond. Math. Soc., II. Ser. 44 (1991), 218-226. Zbl 0754.11010, MR 1136436, 10.1112/jlms/s2-44.2.218 |
Reference:
|
[9] Harman, G.: The values of ternary quadratic forms at prime arguments.Mathematika 51 (2004), 83-96. Zbl 1107.11043, MR 2220213, 10.1112/S0025579300015527 |
Reference:
|
[10] Heath-Brown, D. R.: Weyl's inequality, Hua's inequality, and Waring's problem.J. Lond. Math. Soc., II. Ser. 38 (1988), 216-230. Zbl 0619.10046, MR 0966294, 10.1112/jlms/s2-38.2.216 |
Reference:
|
[11] Hua, L.-K.: Some results in additive prime-number theory.Q. J. Math., Oxf. Ser. 9 (1938), 68-80. Zbl 0018.29404, MR 3363459, 10.1093/qmath/os-9.1.68 |
Reference:
|
[12] Languasco, A., Zaccagnini, A.: A Diophantine problem with a prime and three squares of primes.J. Number Theory 132 (2012), 3016-3028. Zbl 1306.11032, MR 2965205, 10.1016/j.jnt.2012.06.015 |
Reference:
|
[13] Languasco, A., Zaccagnini, A.: A Diophantine problem with prime variables.Highly Composite: Papers in Number Theory V. Kumar Murty, R. Thangadurai Ramanujan Mathematical Society Lecture Notes Series 23, Ramanujan Mathematical Society, Mysore (2016), 157-168. Zbl 1382.11006, MR 3692733 |
Reference:
|
[14] Li, W., Wang, T.: Diophantine approximation with four squares and one $k$-th power of primes.J. Math. Sci. Adv. Appl. 6 (2010), 1-16. Zbl 1238.11047, MR 2828771 |
Reference:
|
[15] Li, W., Wang, T.: Diophantine approximation with two primes and one square of prime.Chin. Q. J. Math. 27 (2012), 417-423. Zbl 1274.11111 |
Reference:
|
[16] Matomäki, K.: Diophantine approximation by primes.Glasg. Math. J. 52 (2010), 87-106. Zbl 1257.11035, MR 2587819, 10.1017/S0017089509990176 |
Reference:
|
[17] Mu, Q.: Diophantine approximation with four squares and one $k$th power of primes.Ramanujan J. 39 (2016), 481-496. Zbl 06562458, MR 3472121, 10.1007/s11139-015-9740-6 |
Reference:
|
[18] Mu, Q.: One Diophantine inequality with unlike powers of prime variables.Int. J. Number Theory 13 (2017), 1531-1545. Zbl 06737274, MR 3656207, 10.1142/S1793042117500853 |
Reference:
|
[19] Mu, Q., Qu, Y.: A Diophantine inequality with prime variables and mixed power.Acta Math. Sin., Chin. Ser. 58 (2015), 491-500 Chinese. Zbl 1340.11055, MR 3443185 |
Reference:
|
[20] Ramachandra, K.: On the sums $\sum\nolimits_{j=1}^K\lambda_jf_j(p_j)$.J. Reine Angew. Math. 262/263 (1973), 158-165. Zbl 0266.10017, MR 0327661, 10.1515/crll.1973.262-263.158 |
Reference:
|
[21] Vaughan, R. C.: Diophantine approximation by prime numbers. I.Proc. Lond. Math. Soc., III. Ser. 28 (1974), 373-384. Zbl 0274.10045, MR 0337812, 10.1112/plms/s3-28.2.373 |
Reference:
|
[22] Vaughan, R. C.: The Hardy-Littlewood Method.Cambridge Tracts in Mathematics 125, Cambridge University Press, Cambridge (1997). Zbl 0868.11046, MR 1435742, 10.1017/CBO9780511470929.001 |
Reference:
|
[23] Vinogradov, I. M.: Representation of an odd number as a sum of three primes.C. R. (Dokl.) Acad. Sci. URSS, n. Ser. 15 (1937), 169-172. Zbl 0016.29101 |
. |