[2] Arendt, W.:
Semigroups and evolution equations: functional calculus, regularity and kernel estimates. Handb. Differ. Equ., vol. I, North-Holland, Amsterdam, 2004, pp. 1–85.
MR 2103696
[4] Arendt, W., Bu, S.:
Operator-valued Fourier multipliers on periodic Besov spaces and applications. Proc. Edinb. Math. Soc. (2) 47 (2004), 15–33.
MR 2064734
[5] Bourgain, J.:
Vector-valued Hausdorff-Young inequalities and applications. Geometric Aspects of Functional Analysis (1986/1987),, vol. 1317, Lecture Notes in Math., Springer Verlag Berlin, 1986, pp. 239–249.
MR 0950985
[6] Bourgain, J.:
Vector-valued singular integrals and the $H^1$-BMO duality. probability theory and harmonic analysis ed., Marcel Dekker, New York, 1986.
MR 0830227
[8] Bu, S., Fang, F.:
Periodic solutions for second order integro-differential equations with infinite delay in Banach spaces. Studia Math. 184 (2) (2008), 103–119.
DOI 10.4064/sm184-2-1 |
MR 2365804
[9] Cai, G., Bu, S.:
Well-posedness of second order degenerate integro-differential equations with infinite delay in vector-valued function spaces. Math. Nachr. 289 (2016), 436–451.
DOI 10.1002/mana.201400112 |
MR 3481298
[10] Cavalcanti, M.M., Cavalcanti, V.N. Domingos, Guesmia, A.:
Weak stability for coupled wave and/or Petrovsky systems with complementary frictional damping and infinite memory. J. Differential Equations 259 (2015), 7540–7577.
DOI 10.1016/j.jde.2015.08.028 |
MR 3401605
[11] Clément, Ph., Da Prato, G.:
Existence and regularity results for an integral equation with infinite delay in a Banach space. Integral Equations Operator Theory 11 (1988), 480–500.
DOI 10.1007/BF01199303 |
MR 0950513
[12] Clément, Ph., de Pagter, B., Sukochev, F.A., Witvliet, M.:
Schauder decomposition and multiplier theorems. Studia Math. 138 (2000), 135–163.
MR 1749077
[13] Clément, Ph., Prüss, J.:
An operator-valued transference principle and maximal regularity on vector-valued $Lp$-spaces. Evolution equations and their applications in physical and life sciences (Bad Herrenalb, 1998), Lecture Notes in Pure and Appl. Math., vol. 215, Dekker, New York, 2001, pp. 67–87.
MR 1816437
[14] Da Prato, G., Lunardi, A.:
Periodic solutions for linear integrodifferential equations with infinite delay in Banach spaces. Differential Equations in Banach spaces, Lecture Notes in Math., vol. 1223, Springer, Berlin, 1986, pp. 49–60.
MR 0872516
[15] de Pagter, B., Witvliet, H.:
Unconditional decompositions and $UMD$ spaces. Publ. Math. Besançon, Fasc. 16 (1998), 79–111.
MR 1768325
[16] Denk, R., Hieber, M., Prüss, Jan:
R-boundedness, Fourier multipliers and problems of elliptic and parabolic type. Mem. Amer. Math. Soc. 788 (2003).
MR 2006641
[21] Keyantuo, V., Lizama, C., Poblete, V.:
Periodic solutions of integro-differential equations in vector-valued function spaces. J. Differential Equations 246 (2009), 1007–1037.
DOI 10.1016/j.jde.2008.09.007 |
MR 2474584
[22] Koumla, S., Ezzinbi, Kh., Bahloul, R.:
Mild solutions for some partial functional integrodifferential equations with finite delay in Fréchet spaces. SeMA J. 74 (4) (2017), 489–501.
DOI 10.1007/s40324-016-0096-7 |
MR 3736690
[23] Kunstmann, P.C., Weis, L.:
Maximal $L_p$-regularity for parabolic equations, Fourier multiplier theorems and $H^\infty $-functional calculus. Functional analytic methods for evolution equations, Lecture Notes in Math., vol. 1855, Springer, Berlin, 2004, pp. 65–311.
MR 2108959
[26] Poblete, V.:
Solutions of second-order integro-differental equations on periodic Besov space. Proc. Edinburgh Math. Soc. (2) 50 (20) (2007), 477–492.
MR 2334958
[28] Weis, L.:
A new approach to maximal $L_p$-regularity. Lect. Notes Pure Appl. Math. 2115 (2001), 195–214.
MR 1818002