Previous |  Up |  Next

Article

Title: Some results on semi-stratifiable spaces (English)
Author: Xuan, Wei-Feng
Author: Song, Yan-Kui
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 144
Issue: 2
Year: 2019
Pages: 113-123
Summary lang: English
.
Category: math
.
Summary: We study relationships between separability with other properties in semi-stratifiable spaces. Especially, we prove the following statements: \endgraf (1) If $X$ is a semi-stratifiable space, then $X$ is separable if and only if $X$ is $DC(\omega _1)$; \endgraf (2) If $X$ is a star countable extent semi-stratifiable space and has a dense metrizable subspace, then $X$ is separable; \endgraf (3) Let $X$ be a $\omega $-monolithic star countable extent semi-stratifiable space. If $t(X)=\omega $ and $d(X) \le \omega _1$, then $X$ is hereditarily separable. \endgraf Finally, we prove that for any $T_1$-space $X$, $|X| \le L(X)^{\Delta (X)}$, which gives a partial answer to a question of Basile, Bella, and Ridderbos (2011). As a corollary, we show that $|X| \le e(X)^{\omega }$ for any semi-stratifiable space $X$. (English)
Keyword: semi-stratifiable space
Keyword: separable space
Keyword: dense subset
Keyword: feebly compact space
Keyword: $\omega $-monolithic space
Keyword: property $DC(\omega _1)$
Keyword: star countable extent space
Keyword: cardinal equality
Keyword: countable chain condition
Keyword: perfect space
Keyword: $G^*_\delta $-diagonal
MSC: 54D20
MSC: 54E35
idZBL: Zbl 07088839
idMR: MR3974181
DOI: 10.21136/MB.2018.0043-17
.
Date available: 2019-06-21T11:31:17Z
Last updated: 2020-07-01
Stable URL: http://hdl.handle.net/10338.dmlcz/147752
.
Reference: [1] Alas, O. T., Junqueira, L. R., Mill, J. van, Tkachuk, V. V., Wilson, R. G.: On the extent of star countable spaces.Cent. Eur. J. Math. 9 (2011), 603-615. Zbl 1246.54017, MR 2784032, 10.2478/s11533-011-0018-y
Reference: [2] Alas, O. T., Junqueira, L. R., Wilson, R. G.: Countability and star covering properties.Topology Appl. 158 (2011), 620-626. Zbl 1226.54023, MR 2765618, 10.1016/j.topol.2010.12.012
Reference: [3] Arhangel'skii, A. A., Buzyakova, R. Z.: The rank of the diagonal and submetrizability.Commentat. Math. Univ. Carol. 47 (2006), 585-597. Zbl 1150.54335, MR 2337413
Reference: [4] Basile, D., Bella, A., Ridderbos, G. J.: Weak extent, submetrizability and diagonal degrees.Houston J. Math. 40 (2014), 255-266. Zbl 1293.54003, MR 3210565
Reference: [5] Creede, G. D.: Concerning semi-stratifiable spaces.Pac. J. Math. 32 (1970), 47-54. Zbl 0189.23304, MR 0254799, 10.2140/pjm.1970.32.47
Reference: [6] Engelking, R.: General Topology.Sigma Series in Pure Mathematics 6. Heldermann, Berlin (1989). Zbl 0684.54001, MR 1039321
Reference: [7] Gotchev, I. S.: Cardinalities of weakly Lindelöf spaces with regular $G_\kappa$-diagonals.Avaible at https://scirate.com/arxiv/1504.01785. MR 3958260
Reference: [8] Gruenhage, G.: Generalized metric spaces.Handbook of Set-Theoretic Topology North-Holland, Amsterdam (1984), 423-501 K. Kunen et al. Zbl 0555.54015, MR 0776629, 10.1016/B978-0-444-86580-9.50013-6
Reference: [9] Hodel, R.: Cardinal functions. I.Handbook of Set-Theoretic Topology North-Holland, Amsterdam (1984), 1-61 K. Kunen et al. Zbl 0559.54003, MR 0776620
Reference: [10] Ikenaga, S.: Topological concept between Lindelöf and Pseudo-Lindelöf.Research Reports of Nara National College of Technology 26 (1990), 103-108 Japanese.
Reference: [11] Juhász, I.: Cardinal Functions in Topology.Mathematical Centre Tracts 34. Mathematisch Centrum, Amsterdam (1971). Zbl 0224.54004, MR 0340021
Reference: [12] Rojas-Sánchez, A. D., Tamariz-Mascarúa, Á.: Spaces with star countable extent.Commentat. Math. Univ. Carol. 57 (2016), 381-395. Zbl 06674888, MR 3554518, 10.14712/1213-7243.2015.176
Reference: [13] Šapirovskij, B. E.: On separability and metrizability of spaces with Souslin's condition.Sov. Math. Dokl. 13 (1972), 1633-1638 translation from Dokl. Akad. Nauk SSSR 207 1972 800-803\kern0pt. Zbl 0268.54007, MR 0322801
Reference: [14] Douwen, E. K. van, Reed, G. M., Roscoe, A. W., Tree, I. J.: Star covering properties.Topology Appl. 39 (1991), 71-103. Zbl 0743.54007, MR 1103993, 10.1016/0166-8641(91)90077-Y
Reference: [15] Wiscamb, M. R.: The discrete countable chain condition.Proc. Am. Math. Soc. 23 (1969), 608-612. Zbl 0184.26304, MR 0248744, 10.2307/2036596
Reference: [16] Xuan, W. F.: Symmetric $g$-functions and cardinal inequalities.Topology Appl. 221 (2017), 51-58. Zbl 1376.54026, MR 3624444, 10.1016/j.topol.2017.02.064
Reference: [17] Yu, Z.: A note on the extent of two subclasses of star countable spaces.Cent. Eur. J. Math. 10 (2012), 1067-1070. Zbl 1243.54042, MR 2902235, 10.2478/s11533-012-0030-x
Reference: [18] Zenor, P.: On spaces with regular $G_\delta $-diagonal.Pac. J. Math. 40 (1972), 759-763. Zbl 0213.49504, MR 0307195, 10.2140/pjm.1972.40.759
.

Files

Files Size Format View
MathBohem_144-2019-2_1.pdf 298.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo