Title:
|
On a divisibility problem (English) |
Author:
|
Yang, Shichun |
Author:
|
Luca, Florian |
Author:
|
Togbé, Alain |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
144 |
Issue:
|
2 |
Year:
|
2019 |
Pages:
|
125-135 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $p_{1}, p_{2}, \cdots $ be the sequence of all primes in ascending order. Using explicit estimates from the prime number theory, we show that if $ k \geq 5 $, then $$ (p_{k+1}-1)! \mid (\tfrac {1}{2} (p_{k +1} - 1))! p_ {k}!, $$ which improves a previous result of the second author. (English) |
Keyword:
|
prime |
Keyword:
|
divisibility |
Keyword:
|
exponent |
Keyword:
|
Sándor-Luca's theorem |
MSC:
|
11A25 |
MSC:
|
11B83 |
idZBL:
|
Zbl 07088840 |
idMR:
|
MR3974182 |
DOI:
|
10.21136/MB.2018.0058-17 |
. |
Date available:
|
2019-06-21T11:31:57Z |
Last updated:
|
2020-07-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/147754 |
. |
Reference:
|
[1] Atanassov, K. T.: Remark on József Sándor and Florian Luca's theorem.C. R. Acad. Bulg. Sci. 55 (2002), 9-14. Zbl 1011.11007, MR 1938730 |
Reference:
|
[2] Berend, D.: On the parity of exponents in the factorization of $n!$.J. Number Theory 64 (1997), 13-19 \99999DOI99999 10.1006/jnth.1997.2106 \goodbreak. Zbl 0874.11025, MR 1450483, 10.1006/jnth.1997.2106 |
Reference:
|
[3] Chen, Y. G., Zhu, Y. C.: On the prime power factorization of $n!$.J. Number Theory 82 (2000), 1-11. Zbl 0999.11015, MR 1755150, 10.1006/jnth.1999.2477 |
Reference:
|
[4] Dusart, P.: Explicit inequalities for $\psi(X)$, $\theta(X)$, $\pi(X)$ and prime numbers.C. R. Math. Acad. Sci., Soc. R. Can. 21 (1999), 53-59 French. Zbl 0935.11002, MR 1697455 |
Reference:
|
[5] Dusart, P.: The $k$-th prime is greater than $k(\log k +\log \log k - 1)$ for $k\geq 2$.Math. Comput. 68 (1999), 411-415. Zbl 0913.11039, MR 1620223, 10.1090/S0025-5718-99-01037-6 |
Reference:
|
[6] Erdős, P.: Note on products of consecutive integers.J. Lond. Math. Soc. 14 (1939), 194-198. Zbl 0021.20704, MR 0000022, 10.1112/jlms/s1-14.3.194 |
Reference:
|
[7] Erdős, P.: On a conjecture of Klee.Am. Math. Monthly 58 (1951), 98-101. Zbl 0042.27501, MR 0040320, 10.2307/2308371 |
Reference:
|
[8] Erdős, P., Graham, R. L.: Old and New Problems and Results in Combinatorial Number Theory.Monographs of L'Enseignement Mathématique 28. L'Enseignement Mathématique, Université de Genève, Genève (1980). Zbl 0434.10001, MR 0592420 |
Reference:
|
[9] Erdős, P., Selfridge, J. L.: The product of consecutive integers is never a power.Ill. J. Math. 19 (1975), 292-301. Zbl 0295.10017, MR 0376517, 10.1215/ijm/1256050816 |
Reference:
|
[10] Hildebrand, A., Tenenbaum, G.: Integers without large prime factors.J. Théor. Nombres Bordx. 5 (1993), 411-484. Zbl 0797.11070, MR 1265913, 10.5802/jtnb.101 |
Reference:
|
[11] Le, M.: A conjecture concerning the Smarandache dual function.Smarandache Notion J. 14 (2004), 153-155. Zbl 1259.11011, MR 1650404 |
Reference:
|
[12] Luca, F.: On a divisibility property involving factorials.C. R. Acad. Bulg. Sci. 53 (2000), 35-38. Zbl 0954.11008, MR 1777831 |
Reference:
|
[13] Luca, F., Stănică, P.: On the prime power factorization of $n!$.J. Number Theory 102 (2003), 298-305. Zbl 1049.11092, MR 1997793, 10.1016/S0022-314X(03)00102-1 |
Reference:
|
[14] Moree, P., Roskam, H.: On an arithmetical function related to Euler's totient and the discriminantor.Fibonacci Q. 33 (1995), 332-340. Zbl 0827.11002, MR 1341262 |
Reference:
|
[15] Nagura, J.: On the interval containing at least one prime number.Proc. Japan Acad. 28 (1952), 177-181. Zbl 0047.04405, MR 0050615, 10.3792/pja/1195570997 |
Reference:
|
[16] Rosser, J. B., Schoenfeld, L.: Approximate formulas for some functions of prime numbers.Ill. J. Math. 6 (1962), 64-94. Zbl 0122.05001, MR 0137689, 10.1215/ijm/1255631807 |
Reference:
|
[17] Sándor, J.: On values of arithmetical functions at factorials I.Smarandache Notions J. 10 (1999), 87-94. Zbl 1115.11301, MR 1682453 |
Reference:
|
[18] Sándor, J.: On certain generalizations of the Smarandache function.Smarandache Notions J. 11 (2000), 202-212. MR 1764904 |
Reference:
|
[19] Tenenbaum, G.: Introduction to Analytic and Probabilistic Number Theory.Cambridge Studies in Advanced Mathematics 46. Cambridge University Press, Cambridge (1995). Zbl 0831.11001, MR 1342300 |
. |